Patents by Inventor Daran DeShazo

Daran DeShazo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220233850
    Abstract: A system and method are provided that include a power supply having positive and negative terminals. The negative terminal defines a reference ground. First and second electrodes are positioned within a patient and configured to be located proximate to tissue of interest that is associated with a target region. A control circuit is configured to control delivery of current for a therapy between the first and second electrodes. A current regulator (CR) circuit is connected to, and configured to control current flow through, at least the first electrode during delivery of the therapy under direction of the control circuit. A floating power supply is connected across power supply terminals of the CR circuit. The CR circuit and floating power supply are coupled to a floating ground node that is electrically separate from the reference ground.
    Type: Application
    Filed: April 13, 2022
    Publication date: July 28, 2022
    Inventors: Steven Boor, Daran DeShazo, Gavin L. Rade
  • Publication number: 20220203107
    Abstract: A system and method for operating an implanted medical device (IMD) based on a waveform player. In one arrangement, the IMD may comprise a first module operative to effectuate a communication interface with an external device for receiving a plurality of program records for storage in a persistent memory, the program records each comprising a plurality of pulse definitions and a plurality of time interval definitions, wherein a pulse definition comprises a set of pulse characteristics to be applied in a particular time interval. A second module may be communicatively coupled to the first module, the second module including a buffer for containing a runtime image of a selected program record loaded from the persistent memory.
    Type: Application
    Filed: October 14, 2021
    Publication date: June 30, 2022
    Inventors: Robert Nobles, Greg Creek, Daran DeShazo
  • Patent number: 11351376
    Abstract: A system and method for extracting ETI load parametric data relative to one or more electrodes of an implanted stimulation lead system associated with an IPG. A Kelvin connection scheme is provided for measuring induced voltages present at stimulated electrodes during a stimulation ramping sequence, which may be used for determining the ETI parametric data using a number of techniques, including, without limitation, a waveform analysis.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: June 7, 2022
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Daran DeShazo, Steven Boor
  • Patent number: 11331477
    Abstract: A neurostimulation (NS) system and method are provided. The system includes a power supply having positive and negative terminals. The negative terminal defines a reference ground. An array of electrodes includes first and second active electrodes for delivering stimulation therapy configured to be located proximate to neural tissue of interest that is associated with a target region. A control circuit is configured to control delivery of stimulation current for a NS therapy between the first and second electrodes. A current regulator (CR) circuit is connected to, and configured to control current flow through, at least the first electrode during delivery of the stimulation therapy under direction of the control circuit. A floating power supply is connected across power supply terminals of the CR circuit. The CR circuit and floating power supply are coupled to a floating ground node that is electrically separate from the reference ground.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: May 17, 2022
    Assignee: ADVANCED NEUROMODULATION SYSTEMS, INC.
    Inventors: Steven Boor, Daran DeShazo, Gavin L. Rade
  • Publication number: 20220023638
    Abstract: An implantable medical device (IMD) includes an adjustable capacitive voltage multiplier (CVM) that is responsive to diagnostic circuitry configured to provide control signals within a single stimulation current pulse for adjusting the voltage output applied to an electrode of the IMD's lead system. A control counter is coupled to the diagnostic circuitry for incrementing or decrementing an N-bit counter output signal operative to reconfigure a charge pump arrangement of the CVM so as to facilitate an adjusted voltage output.
    Type: Application
    Filed: October 12, 2021
    Publication date: January 27, 2022
    Inventors: Daran DeShazo, Steven Boor, Gavin L. Rade
  • Publication number: 20210402192
    Abstract: Embodiments are directed to an implantable medical device comprising therapeutic stimulation circuitry for controlling delivery of a medical therapy to a patient, the therapeutic stimulation circuitry having at least one lead having electrodes for delivering the medical therapy, The implantable medical device further comprises measurement circuitry for determining characteristics of the at least one lead, a processor for controlling the IMD according to executable code, and memory for storing data and executable code, wherein the executable code comprises instructions for causing the processor to receive a plurality of voltage measurements associated with the electrodes, and calculate values for an impedance model of the electrode/tissue interface.
    Type: Application
    Filed: September 9, 2021
    Publication date: December 30, 2021
    Inventors: Daran DeShazo, Steven Boor, Vidhi Desai
  • Publication number: 20210387007
    Abstract: An implantable medical device (IMD) includes multiple stimulation engines for independently stimulating respective electrode sets of a lead system while avoiding collisions and/or channel contention during stimulation delivery. A first voltage multiplier is configured to generate an adjustable target voltage having sufficient headroom at an output node that is commonly coupled to anodic nodes of respective stimulation engines. Each stimulation engine includes a secondary voltage multiplier to drive the respective anode and a current regulator powered by a floating voltage supply, wherein the current regulator is coupled to a cathodic node and configured to control how much stimulation current is pulled from the patient tissue.
    Type: Application
    Filed: August 29, 2021
    Publication date: December 16, 2021
    Inventors: Daran DeShazo, Steven Boor
  • Patent number: 11160984
    Abstract: In one embodiment, an implantable pulse generator (IPG) for providing a neurostimulation therapy, comprises: pulse generation circuitry and pulse delivery circuitry for controlling generation and delivery of electrical pulses to a patient using one or more electrodes of a stimulation lead; measurement circuitry for determining characteristics of one or more electrodes selected for delivery of electrical pulses; and a processor for controlling the IPG according to executable code; wherein the IPG is adapted to calculate values for an impedance model of the one or more selected electrodes using the determined plurality of voltage measurements and to adjust current levels for the exponentially decreasing current pattern based on the calculated values for the impedance mode.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: November 2, 2021
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Daran DeShazo, Steven Boor, Vidhi Desai
  • Publication number: 20210330978
    Abstract: The present disclosure provides systems and methods for circuitry for an implantable pulse generator (IPG) of a neurostimulation system. The circuitry includes at least one anode node, at least one cathode node, a plurality of switching circuits, each switching circuit coupled to the at least one anode node and the at least one cathode node, and a plurality of output channels, each output channel coupled between an associated switching circuit and at least one electrode. The circuitry further includes a first DC blocking capacitor coupled between the at least one anode node and the plurality of switching circuits, a second DC blocking capacitor coupled between the at least one cathode node and the plurality of switching circuits. The circuitry further includes mitigation circuitry operable to limit DC leakage from the plurality of switching circuits through the plurality of output channels.
    Type: Application
    Filed: April 22, 2020
    Publication date: October 28, 2021
    Inventors: Steven Boor, Daran DeShazo
  • Publication number: 20210330982
    Abstract: The present disclosure provides systems and methods for generating waveforms for an implantable pulse generator of a neurostimulation system. A waveform generation system includes a computing device, at least one buffer memory, and at least one programmable current regulator. The at least one buffer memory is coupled between the computing device and the at least one programmable current regulator. The computing device is configured to load a string of output current values into the at least one buffer memory, and the at least one buffer memory is configured to sequentially feed each output current value to the at least one programmable current regulator. Further, the at least one programmable current regulator is configured to control current supplied to a plurality of electrodes based on the received output current values.
    Type: Application
    Filed: April 22, 2020
    Publication date: October 28, 2021
    Inventors: Gavin Rade, Daran DeShazo
  • Patent number: 11154714
    Abstract: An implantable medical device (IMD) includes an adjustable capacitive voltage multiplier (CVM) that is responsive to diagnostic circuitry configured to provide control signals within a single stimulation current pulse for adjusting the voltage output applied to an electrode of the IMD's lead system. A control counter is coupled to the diagnostic circuitry for incrementing or decrementing an N-bit counter output signal operative to reconfigure a charge pump arrangement of the CVM so as to facilitate an adjusted voltage output.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: October 26, 2021
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Daran DeShazo, Steven Boor, Gavin L. Rade
  • Patent number: 11135431
    Abstract: An implantable medical device (IMD) includes multiple stimulation engines for independently stimulating respective electrode sets of a lead system while avoiding collisions and/or channel contention during stimulation delivery. A first voltage multiplier is configured to generate an adjustable target voltage having sufficient headroom at an output node that is commonly coupled to anodic nodes of respective stimulation engines. Each stimulation engine includes a secondary voltage multiplier to drive the respective anode and a current regulator powered by a floating voltage supply, wherein the current regulator is coupled to a cathodic node and configured to control how much stimulation current is pulled from the patient tissue.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: October 5, 2021
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Daran DeShazo, Steven Boor
  • Patent number: 11135439
    Abstract: Embodiments are directed to an implantable medical device comprising therapeutic stimulation circuitry for controlling delivery of a medical therapy to a patient, the therapeutic stimulation circuitry having at least one lead having electrodes for delivering the medical therapy. The implantable medical device further comprises measurement circuitry for determining characteristics of the at least one lead, a processor for controlling the IMD according to executable code, and memory for storing data and executable code, wherein the executable code comprises instructions for causing the processor to receive a plurality of voltage measurements associated with the electrodes, and calculate values for an impedance model of the electrode/tissue interface.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: October 5, 2021
    Assignee: ADVANCED NEUROMODULATION SYSTEMS, INC.
    Inventors: Daran DeShazo, Steven Boor, Vidhi Desai
  • Patent number: 11121624
    Abstract: A configurable multi-output charge pump for power supply generation includes one or more flying capacitors (FCs) arranged to be switchably connected into a plurality of circuit configurations operative to provide respective output voltages at a common charging node. A configuration logic circuit is operative to generate one or more configuration setting control signals to effectuate a particular circuit configuration. One or more storage capacitors (SC) are independently and individually connectable to the common charging node depending on a selection control logic having a configurable duty cycle, wherein each SC is operative to supply a respective voltage output to drive a corresponding electrical load.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: September 14, 2021
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventor: Daran DeShazo
  • Publication number: 20210275819
    Abstract: A system and method for measuring and monitoring charge states of one or more electrodes of an implanted stimulation lead system associated with an IPG. A Kelvin connection scheme operative with a switching circuit is provided for coupling select electrode terminals disposed in a Kelvin connection measurement loop in a switchable manner to sense and reference inputs of an analog-to-digital converter (ADC) configured as at least part of diagnostic circuitry for the IPG.
    Type: Application
    Filed: June 30, 2020
    Publication date: September 9, 2021
    Inventors: Steven Boor, Daran Deshazo
  • Publication number: 20210275805
    Abstract: A system and method for measuring, monitoring and mitigating EMI interference in an implanted stimulation lead system associated with an IPG. A Kelvin connection scheme operative with a diagnostic circuit is provided for sensing an interference voltage induced at a Kelvin connect electrode of the lead system, wherein the diagnostic circuit is configured to generate one or more control signals for adjusting in substantially real time a common-mode voltage reference provided to supply a biasing voltage to the IPG circuitry.
    Type: Application
    Filed: July 16, 2020
    Publication date: September 9, 2021
    Inventors: Steven Boor, Daran DeShazo
  • Publication number: 20210252291
    Abstract: An implantable medical device (IMD) includes multiple stimulation engines (SEs) for independently stimulating respective electrode sets of a lead system. A voltage multiplier (VM) is configured to generate an adjustable target voltage at an output node. Each stimulation engine includes first switching circuitry to switchably connect an anodic node of the SE to the VM output node and second switching circuitry to switchably connect a cathodic node of the SE to a current sink circuit. Discharge switching circuitry may be disposed between the anodic and cathodic nodes of each SE. A selector and associated digital control logic block are operative to generate control signals for independently controlling respective SEs such that each SE may be activated to stimulate or discharge a corresponding select set of electrodes independently from or in concert with remaining SEs.
    Type: Application
    Filed: February 13, 2020
    Publication date: August 19, 2021
    Applicant: Advanced Neuromodulation Systems, Inc.
    Inventors: Daran DeShazo, Steven Boor, Gavin L Rade
  • Publication number: 20210244948
    Abstract: A system and method for extracting ETI load parametric data relative to one or more electrodes of an implanted stimulation lead system associated with an IPG. A Kelvin connection scheme is provided for measuring induced voltages present at stimulated electrodes during a stimulation ramping sequence, which may be used for determining the ETI parametric data using a number of techniques, including, without limitation, a waveform analysis.
    Type: Application
    Filed: February 6, 2020
    Publication date: August 12, 2021
    Applicant: Advanced Neuromodulation Systems, Inc.
    Inventors: Daran DeShazo, Steven Boor
  • Publication number: 20210236822
    Abstract: An implantable medical device (IMD) includes multiple stimulation engines for independently stimulating respective electrode sets of a lead system while avoiding collisions and/or channel contention during stimulation delivery. A first voltage multiplier is configured to generate an adjustable target voltage having sufficient headroom at an output node that is commonly coupled to anodic nodes of respective stimulation engines. Each stimulation engine includes a secondary voltage multiplier to drive the respective anode and a current regulator powered by a floating voltage supply, wherein the current regulator is coupled to a cathodic node and configured to control how much stimulation current is pulled from the patient tissue.
    Type: Application
    Filed: January 31, 2020
    Publication date: August 5, 2021
    Applicant: Advanced Neuromodulation Systems, Inc.
    Inventors: Daran DeShazo, Steven Boor
  • Patent number: 11071864
    Abstract: An apparatus and method for providing split stimulation currents in a pulse generator. In one embodiment, a current regulator of the pulse generator includes a digitally-programmable analog voltage generator coupled to a first input of an error amplifier that receives a second input controlled by a programmable resistor network configured to control a programmable total stimulation current output. A plurality of current splitting switches are operative to split the programmable total stimulation current output into a corresponding plurality of split current segments, which may be individually mapped to a selected set of lead electrodes across one or more implantable leads associated with the pulse generator.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: July 27, 2021
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Steven Boor, Daran DeShazo