Patents by Inventor Darryl G. Walker

Darryl G. Walker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150276501
    Abstract: A semiconductor device that may include at least one temperature sensing circuit is disclosed. The temperature sensing circuits may be used to control various operating parameters to improve the operation of the semiconductor device over a wide temperature range. In this way, operating specifications of a semiconductor device at worst case temperatures may be met without compromising performance at other operating temperatures. The temperature sensing circuit may provide a plurality of temperature ranges for setting the operational parameters. Each temperature range can include a temperature range upper limit value and a temperature range lower limit value and adjacent temperature ranges may overlap. The temperature ranges may be set in accordance with a count value that can incrementally change in response to the at least one temperature sensing circuit.
    Type: Application
    Filed: April 30, 2014
    Publication date: October 1, 2015
    Inventor: Darryl G. Walker
  • Publication number: 20150276500
    Abstract: A semiconductor device that may include at least one temperature sensing circuit is disclosed. The temperature sensing circuits may be used to control various operating parameters to improve the operation of the semiconductor device over a wide temperature range. In this way, operating specifications of a semiconductor device at worst case temperatures may be met without compromising performance at other operating temperatures. The temperature sensing circuit may provide a plurality of temperature ranges for setting the operational parameters. Each temperature range can include a temperature range upper limit value and a temperature range lower limit value and adjacent temperature ranges may overlap. The temperature ranges may be set in accordance with a count value that can incrementally change in response to the at least one temperature sensing circuit.
    Type: Application
    Filed: April 30, 2014
    Publication date: October 1, 2015
    Inventor: Darryl G. Walker
  • Publication number: 20150276510
    Abstract: A semiconductor device that may include at least one temperature sensing circuit is disclosed. The temperature sensing circuits may be used to control various operating parameters to improve the operation of the semiconductor device over a wide temperature range. In this way, operating specifications of a semiconductor device at worst case temperatures may be met without compromising performance at other operating temperatures. The temperature sensing circuit may provide a plurality of temperature ranges for setting the operational parameters. Each temperature range can include a temperature range upper limit value and a temperature range lower limit value and adjacent temperature ranges may overlap. The temperature ranges may be set in accordance with a count value that can incrementally change in response to the at least one temperature sensing circuit.
    Type: Application
    Filed: April 30, 2014
    Publication date: October 1, 2015
    Inventor: Darryl G. Walker
  • Publication number: 20150280702
    Abstract: A semiconductor device that may include at least one temperature sensing circuit is disclosed. The temperature sensing circuits may be used to control various operating parameters to improve the operation of the semiconductor device over a wide temperature range. In this way, operating specifications of a semiconductor device at worst case temperatures may be met without compromising performance at other operating temperatures. The temperature sensing circuit may provide a plurality of temperature ranges for setting the operational parameters. Each temperature range can include a temperature range upper limit value and a temperature range lower limit value and adjacent temperature ranges may overlap. The temperature ranges may be set in accordance with a count value that can incrementally change in response to the at least one temperature sensing circuit.
    Type: Application
    Filed: April 30, 2014
    Publication date: October 1, 2015
    Inventor: Darryl G. Walker
  • Patent number: 8497453
    Abstract: A semiconductor device that may include temperature sensing circuits is disclosed. The temperature sensing circuits may be used to control various parameters, such as internal regulated supply voltages, internal refresh frequency, a word line low voltage, or the like. In this way, operating specifications of a semiconductor device at worse case temperatures may be met without compromising performance at normal operating temperatures. Each temperature sensing circuit may include a selectable temperature threshold value as well as a selectable temperature hysteresis value. In this way, temperature performance characteristics may be finely tuned. Furthermore, a method of testing the temperature sensing circuits is disclosed in which a current value may be monitored an temperature threshold values and temperature hysteresis values may be thereby determined.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: July 30, 2013
    Assignee: Intellectual Ventures Holding 83 LLC
    Inventor: Darryl G. Walker
  • Patent number: 8308359
    Abstract: An apparatus including a temperature-sensing circuit. The temperature-sensing circuit can include an amplifier. The amplifier can include a positive input and a negative input. The negative input can be configured to be driven by a temperature-independent signal. A first transistor electrically can be connected to the positive input. The first transistor can be configured to be controlled by a temperature signal. A temperature threshold resistance and a hysteresis resistance can be electrically connected in series to the positive input. A second transistor can be electrically connected in parallel with the hysteresis resistance.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: November 13, 2012
    Assignee: Intellectual Ventures Holding 83 LLC
    Inventor: Darryl G. Walker
  • Publication number: 20120243574
    Abstract: A semiconductor device that may include temperature sensing circuits is disclosed. The temperature sensing circuits may be used to control various parameters, such as internal regulated supply voltages, internal refresh frequency, or a word line low voltage. In this way, operating specifications of a semiconductor device at worst case temperatures may be met without compromising performance at normal operating temperatures. Each temperature sensing circuit may include a selectable temperature threshold value as well as a selectable temperature hysteresis value. In this way, temperature performance characteristics may be finely tuned. Furthermore, a method of testing the temperature sensing circuits is disclosed in which a current value may be monitored and temperature threshold values and temperature hysteresis values may be thereby determined.
    Type: Application
    Filed: June 7, 2012
    Publication date: September 27, 2012
    Inventor: Darryl G. Walker
  • Publication number: 20120008447
    Abstract: A semiconductor device that may include temperature sensing circuits is disclosed. The temperature sensing circuits may be used to control various parameters, such as internal regulated supply voltages, internal refresh frequency, a word line low voltage, or the like. In this way, operating specifications of a semiconductor device at worse case temperatures may be met without compromising performance at normal operating temperatures. Each temperature sensing circuit may include a selectable temperature threshold value as well as a selectable temperature hysteresis value. In this way, temperature performance characteristics may be finely tuned. Furthermore, a method of testing the temperature sensing circuits is disclosed in which a current value may be monitored an temperature threshold values and temperature hysteresis values may be thereby determined.
    Type: Application
    Filed: September 19, 2011
    Publication date: January 12, 2012
    Inventor: Darryl G. Walker
  • Patent number: 8081532
    Abstract: A semiconductor device includes a first temperature sensing circuit, a multiplexer, and an output circuit. The first temperature sensing circuit can be configured to provide a first temperature indication based on a first temperature threshold value. The first temperature indication can include a first temperature indication logic level. The multiplexer can include a first multiplexer input configured to receive the first temperature indication, a second multiplexer input configured to receive a data signal, and a third multiplexer input configured to receive a temperature read enable signal. The multiplexer can be configured to provide a first multiplexer output. The output circuit can include a first output terminal. The output circuit can be configured to receive the first multiplexer output. The multiplexer and the output circuit can be configured to provide the first temperature indication to the first output terminal when the temperature read enable is enabled.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: December 20, 2011
    Assignee: Intellectual Ventures Holding 83 LLC
    Inventor: Darryl G. Walker
  • Patent number: 8040742
    Abstract: A semiconductor device that may include temperature sensing circuits is disclosed. The temperature sensing circuits may be used to control various parameters, such as internal regulated supply voltages, internal refresh frequency, or a word line low voltage. In this way, operating specifications of a semiconductor device at worst case temperatures may be met without compromising performance at normal operating temperatures. Each temperature sensing circuit may include a selectable temperature threshold value as well as a selectable temperature hysteresis value. In this way, temperature performance characteristics may be finely tuned. Furthermore, a method of testing the temperature sensing circuits is disclosed in which a current value may be monitored and temperature threshold values and temperature hysteresis values may be thereby determined.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: October 18, 2011
    Assignee: Agersonn Rall Group, L.L.C.
    Inventor: Darryl G. Walker
  • Patent number: 8005641
    Abstract: A semiconductor device that may include temperature sensing circuits is disclosed. The temperature-sensing circuits include an amplifier, a transistor, a temperature threshold resistance and a hysteresis resistance, and a latch. The amplifier includes a positive input and a negative input where the negative input is configured to be driven by a temperature-independent signal. The transistor is electrically coupled to the positive input where the transistor is configured to be controlled by a temperature signal. The temperature threshold resistance and a hysteresis resistance is electrically coupled in series to the positive input, wherein the hysteresis resistance is configured to be controlled, at least in part, by an output of the amplifier. The latch is configured to latch the output of the amplifier after a time delay initiated by a transition of a temperature detect signal.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: August 23, 2011
    Assignee: Agersonn Rall Group, L.L.C.
    Inventor: Darryl G. Walker
  • Patent number: 7953573
    Abstract: A semiconductor device that may include temperature sensing circuits is disclosed. The temperature sensing circuits may be used to control various parameters, such as internal regulated supply voltages, internal refresh frequency, or a word line low voltage. In this way, operating specifications of a semiconductor device at worst case temperatures may be met without compromising performance at normal operating temperatures. Each temperature sensing circuit may include a selectable temperature threshold value as well as a selectable temperature hysteresis value. In this way, temperature performance characteristics may be finely tuned. Furthermore, a method of testing the temperature sensing circuits is disclosed in which a current value may be monitored and temperature threshold values and temperature hysteresis values may be thereby determined.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: May 31, 2011
    Assignee: Agersonn Rall Group, L.L.C.
    Inventor: Darryl G. Walker
  • Publication number: 20110044372
    Abstract: A semiconductor device that may include temperature sensing circuits is disclosed. The temperature sensing circuits may be used to control various parameters, such as internal regulated supply voltages, internal refresh frequency, or a word line low voltage. In this way, operating specifications of a semiconductor device at worst case temperatures may be met without compromising performance at normal operating temperatures. Each temperature sensing circuit may include a selectable temperature threshold value as well as a selectable temperature hysteresis value. In this way, temperature performance characteristics may be finely tuned. Furthermore, a method of testing the temperature sensing circuits is disclosed in which a current value may be monitored and temperature threshold values and temperature hysteresis values may be thereby determined.
    Type: Application
    Filed: January 15, 2010
    Publication date: February 24, 2011
    Inventor: Darryl G. Walker
  • Publication number: 20110044119
    Abstract: A semiconductor device that may include temperature sensing circuits is disclosed. The temperature sensing circuits may be used to control various parameters, such as internal regulated supply voltages, internal refresh frequency, or a word line low voltage. In this way, operating specifications of a semiconductor device at worst case temperatures may be met without compromising performance at normal operating temperatures. Each temperature sensing circuit may include a selectable temperature threshold value as well as a selectable temperature hysteresis value. In this way, temperature performance characteristics may be finely tuned. Furthermore, a method of testing the temperature sensing circuits is disclosed in which a current value may be monitored and temperature threshold values and temperature hysteresis values may be thereby determined.
    Type: Application
    Filed: April 2, 2010
    Publication date: February 24, 2011
    Inventor: Darryl G. Walker
  • Publication number: 20110044118
    Abstract: A semiconductor device that may include temperature sensing circuits is disclosed. The temperature sensing circuits may be used to control various parameters, such as internal regulated supply voltages, internal refresh frequency, or a word line low voltage. In this way, operating specifications of a semiconductor device at worst case temperatures may be met without compromising performance at normal operating temperatures. Each temperature sensing circuit may include a selectable temperature threshold value as well as a selectable temperature hysteresis value. In this way, temperature performance characteristics may be finely tuned. Furthermore, a method of testing the temperature sensing circuits is disclosed in which a current value may be monitored and temperature threshold values and temperature hysteresis values may be thereby determined.
    Type: Application
    Filed: December 10, 2009
    Publication date: February 24, 2011
    Inventor: Darryl G. Walker
  • Publication number: 20110046912
    Abstract: A semiconductor device that may include temperature sensing circuits is disclosed. The temperature sensing circuits may be used to control various parameters, such as internal regulated supply voltages, internal refresh frequency, or a word line low voltage. In this way, operating specifications of a semiconductor device at worst case temperatures may be met without compromising performance at normal operating temperatures. Each temperature sensing circuit may include a selectable temperature threshold value as well as a selectable temperature hysteresis value. In this way, temperature performance characteristics may be finely tuned. Furthermore, a method of testing the temperature sensing circuits is disclosed in which a current value may be monitored and temperature threshold values and temperature hysteresis values may be thereby determined.
    Type: Application
    Filed: June 4, 2010
    Publication date: February 24, 2011
    Inventor: Darryl G. Walker
  • Publication number: 20110037138
    Abstract: A semiconductor device that may include temperature sensing circuits is disclosed. The temperature sensing circuits may be used to control various parameters, such as internal regulated supply voltages, internal refresh frequency, or a word line low voltage. In this way, operating specifications of a semiconductor device at worst case temperatures may be met without compromising performance at normal operating temperatures. Each temperature sensing circuit may include a selectable temperature threshold value as well as a selectable temperature hysteresis value. In this way, temperature performance characteristics may be finely tuned. Furthermore, a method of testing the temperature sensing circuits is disclosed in which a current value may be monitored and temperature threshold values and temperature hysteresis values may be thereby determined.
    Type: Application
    Filed: August 13, 2009
    Publication date: February 17, 2011
    Inventor: Darryl G. Walker
  • Patent number: 7639548
    Abstract: A semiconductor device that may include temperature sensing circuits is disclosed. The temperature sensing circuits may be used to control various parameters, such as internal regulated supply voltages, internal refresh frequency, a word line low voltage, or the like. In this way, operating specifications of a semiconductor device at worst case temperatures may be met without compromising performance at normal operating temperatures. Each temperature sensing circuit may include a selectable temperature threshold value as well as a selectable temperature hysteresis value. In this way, temperature performance characteristics may be finely tuned. Furthermore, a method of testing the temperature sensing circuits is disclosed in which a current value may be monitored and temperature threshold values and temperature hysteresis values may be thereby determined.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: December 29, 2009
    Inventor: Darryl G. Walker
  • Patent number: 6967887
    Abstract: A dynamic random access memory (DRAM) cell and associated array are disclosed. The DRAM cell (300) includes a storage capacitor (304) and a pass transistor (302). The pass transistor (302) includes a source region (322), drain region (320) and channel region (324). A top gate (318) is disposed over the channel region (324) and a bottom gate (310) is disposed below the channel region (324). The top gate (318) and bottom gate (310) are commonly driven to provide greater control of the pass transistor (302) operation, including an off state with reduced source-to-drain leakage. The DRAM array (400) includes memory cells (414) having pass transistors (500) with double-gate structures. Memory cells (414) within the same row are commonly coupled to a top word line and bottom word line. The resistance of the top and bottom word lines is reduced by a word line strap layer (600). The DRAM array (400) further includes a strapping area that is void of memory cells.
    Type: Grant
    Filed: April 26, 2004
    Date of Patent: November 22, 2005
    Inventor: Darryl G. Walker
  • Patent number: 6934180
    Abstract: A dynamic random access memory (DRAM) cell and associated array are disclosed. The DRAM cell (300) includes a storage capacitor (304) and a pass transistor (302). The pass transistor (302) includes a source region (322), drain region (320) and channel region (324). A top gate (318) is disposed over the channel region (324) and a bottom gate (310) is disposed below the channel region (324). The top gate (318) and bottom gate (310) are commonly driven to provide greater control of the pass transistor (302) operation, including an off state with reduced source-to-drain leakage. The DRAM array (400) includes memory cells (414) having pass transistors (500) with double-gate structures. Memory cells (414) within the same row are commonly coupled to a top word line and bottom word line. The resistance of the top and bottom word lines is reduced by a word line strap layer (600). The DRAM array (400) further includes a strapping area that is void of memory cells.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: August 23, 2005
    Inventor: Darryl G. Walker