Patents by Inventor David A. Dinsmoor

David A. Dinsmoor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210361942
    Abstract: In some examples, a method including determining a chronaxie of evoked threshold motor responses from electrical stimulation delivered to a sacral nerve of a patient; and delivering, based on the determined chronaxie, electrical stimulation therapy, configured to treat a patient condition, to the sacral nerve having a pulse width at or near the identified chronaxie, wherein the delivered electrical stimulation is configured to inhibit contraction of at least one a bladder or bowel of the patient.
    Type: Application
    Filed: August 6, 2021
    Publication date: November 25, 2021
    Inventors: Xin Su, David A. Dinsmoor
  • Patent number: 11179567
    Abstract: Systems, devices, and techniques are described for adjusting electrical stimulation based on detected ECAPs. In one example, a medical device includes processing circuitry configured to control stimulation circuitry to deliver a first electrical stimulation pulse and sensing circuitry to detect, after delivery of the first electrical stimulation pulse, an ECAP signal. The processing circuitry may be configured to determine a characteristic value of the ECAP signal, determine an ECAP differential value that indicates whether the characteristic value of the ECAP signal is one of greater than a selected ECAP characteristic value or less than the selected ECAP characteristic value, determine, based on the ECAP differential value, a gain value, determine, based on the gain value, a parameter value that at least partially defines a second electrical stimulation pulse, and control the stimulation circuitry to deliver the second electrical stimulation pulse according to the parameter value.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: November 23, 2021
    Assignee: Medtronic, Inc.
    Inventors: David A. Dinsmoor, Christopher L. Pulliam, Hank Bink, Kristin N. Hageman
  • Publication number: 20210339014
    Abstract: A lead body is operable to be implanted proximate a target nerve tissue of a patient. A sensing electrode is configured to sense biopotentials over a first partial circumference of the lead body. A stimulation electrode is configured to deliver stimulation energy over a second partial circumference of the lead body. A signal generator is electrically coupled to the stimulation electrode and a sensing circuit is coupled to the sensing electrode. A processor is operable to apply a stimulation signal to the stimulation electrode via the signal generator and, via the sensing circuit, sense an evoked response to the stimulation signal that propagates along a neural pathway.
    Type: Application
    Filed: April 30, 2020
    Publication date: November 4, 2021
    Inventors: David A. Dinsmoor, Jiashu Li
  • Publication number: 20210339015
    Abstract: A lead body is operable to be implanted proximate a target nerve tissue of a patient. A sensing electrode is configured to sense biopotentials over a first partial circumference of the lead body. A stimulation electrode is configured to deliver stimulation energy over a second partial circumference of the lead body. A signal generator is electrically coupled to the stimulation electrode and a sensing circuit is coupled to the sensing electrode. A processor is operable to apply a stimulation signal to the stimulation electrode via the signal generator and, via the sensing circuit, sense an evoked response to the stimulation signal that propagates along a neural pathway.
    Type: Application
    Filed: April 30, 2020
    Publication date: November 4, 2021
    Inventors: David A. Dinsmoor, Jiashu Li, Andrew L. Schmeling
  • Patent number: 11141591
    Abstract: Techniques, devices, and systems for isolating, by isolation circuitry connected to a power source, a voltage from the power source, receiving, by sensing circuitry, the isolated voltage, receiving, by the sensing circuitry, a reference voltage from an implantable reference electrode via a reference node, and sensing, by the sensing circuitry, the biomedical signal with two or more implantable sensing electrodes using the isolated voltage with respect to the reference voltage.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: October 12, 2021
    Assignee: Medtronic, Inc.
    Inventors: David A. Dinsmoor, Scott R. Stanslaski, Erik J. Peterson, Paul R. Mazanec
  • Patent number: 11129989
    Abstract: Devices, systems, and techniques for controlling electrical stimulation therapy are described. In one example, a system may be configured to deliver electrical stimulation therapy to a patient, the electrical stimulation therapy comprising a plurality of therapy pulses at a predetermined pulse frequency over a period of time and deliver, over the period of time, a plurality of control pulses interleaved with at least some therapy pulses of the plurality of therapy pulses. The system may also be configured to sense, after one or more control pulses and prior to an immediately subsequent therapy pulse of the plurality of therapy pulses, a respective evoked compound action potential (ECAP), adjust, based on at least one respective ECAP, one or more parameter values that at least partially defines the plurality of therapy pulses, and deliver the electrical stimulation therapy to the patient according to the adjusted one or more parameter values.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: September 28, 2021
    Assignee: Medtronic, Inc.
    Inventors: David A. Dinsmoor, Heather Diane Orser, Scott R. Stanslaski, Erik J. Peterson
  • Patent number: 11129991
    Abstract: Devices, systems, and techniques for controlling electrical stimulation therapy are described. In one example, a system may be configured to deliver electrical stimulation therapy to a patient, the electrical stimulation therapy comprising a plurality of therapy pulses at a predetermined pulse frequency over a period of time and deliver, over the period of time, a plurality of control pulses interleaved with at least some therapy pulses of the plurality of therapy pulses. The system may also be configured to sense, after one or more control pulses and prior to an immediately subsequent therapy pulse of the plurality of therapy pulses, a respective evoked compound action potential (ECAP), adjust, based on at least one respective ECAP, one or more parameter values that at least partially defines the plurality of therapy pulses, and deliver the electrical stimulation therapy to the patient according to the adjusted one or more parameter values.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: September 28, 2021
    Assignee: Medtronic, Inc.
    Inventors: David A. Dinsmoor, Kristin N. Hageman, Hank Bink
  • Patent number: 11123555
    Abstract: Example systems for positioning an implantable electrode may include a stimulation circuitry, a sensing circuitry, and processing circuitry. The stimulation circuitry may generate electrical stimulation deliverable to a patient. The sensing circuitry may sense electromyographic (EMG) responses. The processing circuitry may control the stimulation circuitry to deliver the electrical stimulation at a plurality of different stimulation metric levels at each of a plurality of different positions. The processing circuitry may sense, via the sensing circuitry, electromyographic (EMG) responses to the electrical stimulation. The processing circuitry may score one or more of the different positions for chronic implantation of at least one implantable electrode. The scoring may be based on a stimulation metric level greater than a predetermined metric threshold sufficient to evoke at least some of the sensed EMG responses, and a level of the at least some of the sensed EMG responses.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: September 21, 2021
    Assignee: Medtronic, Inc.
    Inventors: Xin Su, David A. Dinsmoor, Jason E. Agran
  • Patent number: 11045650
    Abstract: In general, techniques, methods, systems, and devices for delivering high frequency neurostimulation to control one or more pelvic disorders are described. In one example, a method includes identifying, by a medical device configured to be at least partially implanted in a patient, an indication to inhibit bladder activity. The medical device generates, in response to identifying the indication, electrical stimulation therapy comprising first electrical stimulation pulses comprising a first frequency greater than or equal to about 500 Hertz and less than or equal to about 5,000 Hertz. Further, the medical device delivers the electrical stimulation therapy to a target nerve selected from a group consisting of: a sacral nerve, a pelvic nerve, a tibial nerve, and a pudendal nerve of the patient.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: June 29, 2021
    Assignee: Medtronic, Inc.
    Inventors: Thaddeus S. Brink, Dwight E. Nelson, Lance Zirpel, Xin Su, Blake A. Hedstrom, Erik J. Peterson, David A. Dinsmoor
  • Publication number: 20210187298
    Abstract: Systems, devices, and techniques are described for adjusting electrical stimulation based on detected ECAPs. In one example, a medical device includes processing circuitry configured to control stimulation circuitry to deliver a first electrical stimulation pulse and sensing circuitry to detect, after delivery of the first electrical stimulation pulse, an ECAP signal. The processing circuitry may be configured to determine a characteristic value of the ECAP signal, determine an ECAP differential value that indicates whether the characteristic value of the ECAP signal is one of greater than a selected ECAP characteristic value or less than the selected ECAP characteristic value, determine, based on the ECAP differential value, a gain value, determine, based on the gain value, a parameter value that at least partially defines a second electrical stimulation pulse, and control the stimulation circuitry to deliver the second electrical stimulation pulse according to the parameter value.
    Type: Application
    Filed: December 19, 2019
    Publication date: June 24, 2021
    Inventors: David A. Dinsmoor, Christopher L. Pulliam, Hank Bink, Kristin N. Hageman
  • Publication number: 20210187302
    Abstract: Systems, devices, and techniques for adjusting electrical stimulation based on a posture state of a patient are described. For example, a system may include sensing circuitry configured to sense an ECAP signal and processing circuitry configured to control delivery of the electrical stimulation to a patient according to a first value of a stimulation parameter and determine a characteristic value of the ECAP signal. The processing circuitry may also be configured to receive, from a sensor, a posture state signal representing a posture state of the patient, determine, based on the posture state signal, a gain value for the stimulation parameter, adjust, based on the characteristic value of the ECAP signal and the gain value, the first value of the stimulation parameter to a second value of the stimulation parameter, and control delivery of the electrical stimulation according to the second value of the stimulation parameter.
    Type: Application
    Filed: November 20, 2020
    Publication date: June 24, 2021
    Inventors: Christopher L. Pulliam, David A. Dinsmoor, Hank Bink, Kristin N. Hageman
  • Publication number: 20210187297
    Abstract: Systems, devices, and techniques for adjusting electrical stimulation based on a posture state of a patient are described. For example, processing circuitry is configured to control delivery of a first informed stimulation pulse defined by at least a first value of an informed stimulation parameter, control delivery of a control stimulation pulse to a patient, the control stimulation pulse defined by at least a first value of a control stimulation parameter, determine a characteristic value of the ECAP signal elicited from the control stimulation pulse, receive, from a sensor, a posture state signal representing a posture state of the patient, and adjust, based on the characteristic value of the ECAP signal and the posture state signal, the first value of the informed stimulation parameter to a second value of the informed stimulation parameter.
    Type: Application
    Filed: November 20, 2020
    Publication date: June 24, 2021
    Inventors: Christopher L. Pulliam, David A. Dinsmoor, Hank Bink, Kristin N. Hageman
  • Publication number: 20210187299
    Abstract: Devices, systems, and techniques are described for selecting an evoked compound action potential (ECAP) growth curve based on a posture of a patient. The ECAP growth curve defines a relationship between a parameter defining delivery of stimulation pulses delivered to the patient and a parameter of an ECAP signal of a nerve of a patient elicited by a stimulation pulse. In one example, a medical device detects a posture of a patient and selects an ECAP growth curve corresponding to the detected posture. The medical device selects, based on the ECAP growth curve corresponding to the detected posture and a characteristic of a detected ECAP signal, a value for a parameter for defining delivery of the stimulation pulses to the patient and controls delivery of the stimulation pulses according to the selected value for the parameter.
    Type: Application
    Filed: December 19, 2019
    Publication date: June 24, 2021
    Inventors: David A. Dinsmoor, Christopher L. Pulliam, Hank Bink, Kristin N. Hageman
  • Publication number: 20210187300
    Abstract: Systems, devices, and techniques are described for determining a posture state of a patient based on detected evoked compound action potentials (ECAPs). In one example, a medical device includes stimulation circuitry configured to deliver electrical stimulation and sensing circuitry configured to sense a plurality of evoked compound action potential (ECAP) signals. The medical device also includes processing circuitry configured to control the stimulation circuitry to deliver a plurality of electrical stimulation pulses having different amplitude values, control the sensing circuitry to detect, after delivery of each electrical stimulation pulse of the plurality of electrical stimulation pulses, a respective ECAP signal of the plurality of ECAP signals, and determine, based on the plurality of ECAP signals, a posture state of the patient.
    Type: Application
    Filed: December 19, 2019
    Publication date: June 24, 2021
    Inventors: David A. Dinsmoor, Christopher L. Pulliam, Kristin N. Hageman, Hank Bink, Jiashu Li
  • Publication number: 20210121698
    Abstract: Systems, devices, and techniques are described for determining stimulation parameters based on one or more stimulation thresholds (e.g., a perception threshold or a detection threshold). In one example, a medical device includes sensing circuitry configured to sense one or more ECAP signals, wherein the sensing circuitry is configured to sense each ECAP signal of the one or more ECAPs elicited by a respective control pulse of a plurality of control pulses, and the medical device includes processing circuitry configured to determine, based on the one or more ECAP signals, a stimulation level for the plurality of control pulses that achieves a stimulation threshold, determine, based on the stimulation level, a value of a stimulation parameter that at least partially defines a plurality of therapy pulses of electrical stimulation therapy, and control stimulation generation circuitry to deliver the electrical stimulation therapy according to the value of the stimulation parameter.
    Type: Application
    Filed: October 7, 2020
    Publication date: April 29, 2021
    Inventors: David A. Dinsmoor, Melanie D. Goodman Keiser
  • Publication number: 20210121699
    Abstract: Evoked compound action potentials (ECAPs) may be used to determine therapy. For example, a medical device includes stimulation generation circuitry and processing circuitry. The processing circuitry is configured to determine if a characteristic of a first ECAP is greater than a threshold ECAP characteristic value. Based on the characteristic of the first ECAP being greater than the threshold ECAP characteristic value, the processing circuitry is configured to decrease a parameter of a first set of pulses delivered by the stimulation generation circuitry after the first ECAP. Additionally, the processing circuitry is configured to determine if a characteristic of a second ECAP is less than the threshold ECAP characteristic value and based on the characteristic of the second ECAP being less than the threshold ECAP characteristic value, increase a parameter of a second set of pulses delivered by the stimulation generation circuitry after the second ECAP.
    Type: Application
    Filed: October 8, 2020
    Publication date: April 29, 2021
    Inventors: David A. Dinsmoor, Kristin N. Hageman, Hank Bink, Christopher L. Pulliam
  • Publication number: 20210121700
    Abstract: Techniques are disclosed for implementing the use of electrically evoked compound action potentials (ECAPs) to adaptively adjust parameters of high frequency electrical stimulation. In one example, a medical device delivers electrical stimulation therapy comprising a train of electrical stimulation pulses to a patient, wherein the train of electrical stimulation pulses comprises a pulse frequency greater than or equal to 500 Hertz. After delivering the train of electrical stimulation pulses, the medical device ceases delivery of the high frequency electrical stimulation therapy for a predetermined period of time. During the predetermined period of time, the medical device senses an ECAP from the patient and determines, based on the sensed ECAP, a value of a parameter at least partially defining the train of electrical stimulation pulses.
    Type: Application
    Filed: October 7, 2020
    Publication date: April 29, 2021
    Inventors: David A. Dinsmoor, Christopher L. Pulliam, Hank Bink, Kristin N. Hageman
  • Publication number: 20210006093
    Abstract: In some examples, a medical device system includes a first implantable medical device. The first implantable medical device (IMD) may comprise circuitry configured to at least one of deliver a therapy to a patient or sense a physiological signal from the patient; generate stimulation deliverable to a patient; a first rechargeable power source; and a secondary coil coupled to the first rechargeable power source, the secondary coil configured to charge the first rechargeable power source via inductive coupling with a primary coil of an external charging device. The medical device system may comprise processing circuitry configured to control charging of the first rechargeable power source based on a charge state of a second rechargeable power source of a second IMD.
    Type: Application
    Filed: September 18, 2020
    Publication date: January 7, 2021
    Inventors: Erik R. Scott, David A. Dinsmoor, Venkat R. Gaddam
  • Publication number: 20200384261
    Abstract: A medical device system for delivering a neuromodulation therapy includes a delivery tool for deploying an implantable medical device at a neuromodulation therapy site. The implantable medical device includes a housing, an electronic circuit within the housing, and an electrical lead comprising a lead body extending between a proximal end coupled to the housing and a distal end extending away from the housing and at least one electrode carried by the lead body. The delivery tool includes a first cavity for receiving the housing and a second cavity for receiving the lead. The first cavity and the second cavity are in direct communication for receiving and deploying the housing and the lead coupled to the housing concomitantly as a single unit.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 10, 2020
    Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C.M. Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
  • Publication number: 20200384260
    Abstract: An implantable medical device (IMD) has a housing enclosing an electronic circuit. The housing includes a first housing portion, a second housing portion and a joint coupling the first housing portion to the second housing portion. A polymer seal is positioned in the joint in various embodiments. Other embodiments of an IMD housing are disclosed.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 10, 2020
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde, David A. Dinsmoor, Duane L. Bourget, Forrest C. M. Pape, Joel A. Anderson, Stephen J. Roddy, Timothy J. Denison, Todd V. Smith