Patents by Inventor David D. Smith

David D. Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11735678
    Abstract: A solar cell, and methods of fabricating said solar cell, are disclosed. The solar cell can include a first emitter region over a substrate, the first emitter region having a perimeter around a portion of the substrate. A first conductive contact is electrically coupled to the first emitter region at a location outside of the perimeter of the first emitter region.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: August 22, 2023
    Assignee: Maxeon Solar Pte. Ltd.
    Inventors: David D. Smith, Jeffrey El Cotter, David Aaron Randolph Barkhouse, Taeseok Kim
  • Publication number: 20230238469
    Abstract: A method of fabricating a solar cell is disclosed. The method can include forming a dielectric region on a surface of a solar cell structure and forming a metal layer on the dielectric layer. The method can also include configuring a laser beam with a particular shape and directing the laser beam with the particular shape on the metal layer, where the particular shape allows a contact to be formed between the metal layer and the solar cell structure.
    Type: Application
    Filed: February 24, 2023
    Publication date: July 27, 2023
    Inventors: Matthieu Moors, DAVID D. SMITH, GABRIEL HARLEY, TAESEOK KIM
  • Publication number: 20230238471
    Abstract: A method for manufacturing high efficiency solar cells is disclosed. The method comprises providing a thin dielectric layer and a doped polysilicon layer on the back side of a silicon substrate. Subsequently, a high quality oxide layer and a wide band gap doped semiconductor layer can both be formed on the back and front sides of the silicon substrate. A metallization process to plate metal fingers onto the doped polysilicon layer through contact openings can then be performed. The plated metal fingers can form a first metal gridline. A second metal gridline can be formed by directly plating metal to an emitter region on the back side of the silicon substrate, eliminating the need for contact openings for the second metal gridline. Among the advantages, the method for manufacture provides decreased thermal processes, decreased etching steps, increased efficiency and a simplified procedure for the manufacture of high efficiency solar cells.
    Type: Application
    Filed: March 24, 2023
    Publication date: July 27, 2023
    Inventors: Peter J. Cousins, David D. Smith, Seung Bum Rim
  • Publication number: 20230197877
    Abstract: Solar cells having emitter regions composed of wide bandgap semiconductor material are described. In an example, a method includes forming, in a process tool having a controlled atmosphere, a thin dielectric layer on a surface of a semiconductor substrate of the solar cell. The semiconductor substrate has a bandgap. Without removing the semiconductor substrate from the controlled atmosphere of the process tool, a semiconductor layer is formed on the thin dielectric layer. The semiconductor layer has a bandgap at least approximately 0.2 electron Volts (eV) above the bandgap of the semiconductor substrate.
    Type: Application
    Filed: February 9, 2023
    Publication date: June 22, 2023
    Inventors: Richard M. Swanson, Marius M. Bunea, Michael C. Johnson, David D. Smith, Yu-Chen Shen, Peter J. Cousins, Tim Dennis
  • Patent number: 11682744
    Abstract: A solar cell, and methods of fabricating said solar cell, are disclosed. The solar cell can include a substrate having a light-receiving surface and a back surface. The solar cell can include a first semiconductor region of a first conductivity type disposed on a first dielectric layer, wherein the first dielectric layer is disposed on the substrate. The solar cell can also include a second semiconductor region of a second, different, conductivity type disposed on a second dielectric layer, where a portion of the second thin dielectric layer is disposed between the first and second semiconductor regions. The solar cell can include a third dielectric layer disposed on the second semiconductor region. The solar cell can include a first conductive contact disposed over the first semiconductor region but not the third dielectric layer.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: June 20, 2023
    Assignee: Maxeon Solar Pte. Ltd.
    Inventor: David D. Smith
  • Publication number: 20230142230
    Abstract: Implementations described and claimed herein provide systems and methods for dynamic waterflood forecast modeling utilizing deep thinking computational techniques to reduce the processing time for generating the forecast model and improving the accuracy of resulting forecasts. In one particular implementation, a dataset of a field may be restructured into the spatio-temporal framework and data driven deep neural networks may be utilized to learn the nuances of data interactions to make more accurate forecasts for each well in the field. Further, the generated model may forecast a single time segment and build the complete forecast through recursive prediction instances. The temporal component of the restructured data may include all or a portion of the production history of the field divided into spaced time intervals. The spatial component of the restructure data may include, within each epoch, a computed or estimated spatial relationships of all existing wells.
    Type: Application
    Filed: November 8, 2022
    Publication date: May 11, 2023
    Inventors: Amir Nejad, Christopher S. Olsen, Bo Hu, Xin Luo, Qing Chen, Alexander J. Wagner, Liu Chao Zhang, Iman Shahim, Curt E. Schneider, David D. Smith, Andy Flowers, Richard Barclay
  • Publication number: 20230140905
    Abstract: Implementations described and claimed herein provide systems and methods for a framework to achieve completion optimization for waterflood field reservoirs. The proposed methodology leverages adequate data collection, preprocessing, subject matter expert knowledge-based feature engineering for geological, reservoir and completion inputs, and state-of-the-art machine-learning technologies, to indicate important production drivers, provide sensitivity analysis to quantify the impacts of the completion features, and ultimately achieve completion optimization. In this analytical framework, model-less feature ranking based on mutual information concept and model-dependent sensitivity analyses, in which a variety of machine-learning models are trained and validated, provides comprehensive multi-variant analyses that empower subject-matter experts to make a smarter decision in a timely manner.
    Type: Application
    Filed: November 8, 2022
    Publication date: May 11, 2023
    Inventors: Bo Hu, Qing Chen, Amir Nejad, Xin Luo, Christopher S. Olsen, Robert C. Burton, Liang Zhou, Xin Jun Gou, Liu Chao Zhang, Junjing Zhang, Iman Shahim, Curt E. Schneider, David D. Smith, Andy Flowers
  • Publication number: 20230142526
    Abstract: Systems and method for predicting production decline for a target well include generating a static model and a decline model to generate a well production profile. The static model is generated with supervised machine learning using an input data set including historical production data, and calculates an initial resource production rate for the target well. The decline model is generated with a neural network using the input data and dynamic data (e.g., an input time interval and pressure data of the target well), and calculates a plurality of resource production rates for a plurality of time intervals. The system can perform multiple recursive calculations to calculate the plurality of resource production rates, generating the well production profile. For instance, the predicted resource production rate of a first time interval is used as one of inputs for predicting the resource production rate for a second, subsequent time interval.
    Type: Application
    Filed: November 8, 2022
    Publication date: May 11, 2023
    Inventors: Qing Chen, Xin Luo, Amir Nejad, Bo Hu, Christopher S. Olsen, Alexander J. Wagner, Iman Shahim, Curt E. Schneider, David D. Smith, Andy Flowers, Liu Chao Zhang
  • Patent number: 11637213
    Abstract: A method for manufacturing high efficiency solar cells is disclosed. The method comprises providing a thin dielectric layer and a doped polysilicon layer on the back side of a silicon substrate. Subsequently, a high quality oxide layer and a wide band gap doped semiconductor layer can both be formed on the back and front sides of the silicon substrate. A metallization process to plate metal fingers onto the doped polysilicon layer through contact openings can then be performed. The plated metal fingers can form a first metal gridline. A second metal gridline can be formed by directly plating metal to an emitter region on the back side of the silicon substrate, eliminating the need for contact openings for the second metal gridline. Among the advantages, the method for manufacture provides decreased thermal processes, decreased etching steps, increased efficiency and a simplified procedure for the manufacture of high efficiency solar cells.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: April 25, 2023
    Assignee: Maxeon Solar Pte. Ltd.
    Inventors: Peter J. Cousins, David D. Smith, Seung Bum Rim
  • Patent number: 11616159
    Abstract: A method of fabricating a solar cell is disclosed. The method can include forming a dielectric region on a surface of a solar cell structure and forming a metal layer on the dielectric layer. The method can also include configuring a laser beam with a particular shape and directing the laser beam with the particular shape on the metal layer, where the particular shape allows a contact to be formed between the metal layer and the solar cell structure.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: March 28, 2023
    Assignees: SunPower Corporation, Total Marketing Services
    Inventors: Matthieu Moors, David D. Smith, Gabriel Harley, Taeseok Kim
  • Patent number: 11605750
    Abstract: Solar cells having emitter regions composed of wide bandgap semiconductor material are described. In an example, a method includes forming, in a process tool having a controlled atmosphere, a thin dielectric layer on a surface of a semiconductor substrate of the solar cell. The semiconductor substrate has a bandgap. Without removing the semiconductor substrate from the controlled atmosphere of the process tool, a semiconductor layer is formed on the thin dielectric layer. The semiconductor layer has a bandgap at least approximately 0.2 electron Volts (eV) above the bandgap of the semiconductor substrate.
    Type: Grant
    Filed: February 23, 2021
    Date of Patent: March 14, 2023
    Assignee: SunPower Corporation
    Inventors: Richard M. Swanson, Marius M. Bunea, Michael C. Johnson, David D. Smith, Yu-Chen Shen, Peter J. Cousins, Tim Dennis
  • Patent number: 11502208
    Abstract: Methods of fabricating solar cell emitter regions with differentiated P-type and N-type regions architectures, and resulting solar cells, are described. In an example, a back contact solar cell includes a substrate having a light-receiving surface and a back surface. A first polycrystalline silicon emitter region of a first conductivity type is disposed on a first thin dielectric layer disposed on the back surface of the substrate. A second polycrystalline silicon emitter region of a second, different, conductivity type is disposed on a second thin dielectric layer disposed on the back surface of the substrate. A third thin dielectric layer is disposed laterally directly between the first and second polycrystalline silicon emitter regions. A first conductive contact structure is disposed on the first polycrystalline silicon emitter region. A second conductive contact structure is disposed on the second polycrystalline silicon emitter region.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: November 15, 2022
    Assignee: SunPower Corporation
    Inventors: Seung Bum Rim, David D. Smith, Taiqing Qiu, Staffan Westerberg, Kieran Mark Tracy, Venkatasubramani Balu
  • Patent number: 11437530
    Abstract: Methods of fabricating solar cell emitter regions with differentiated P-type and N-type regions architectures, and resulting solar cells, are described. In an example, a back contact solar cell can include a substrate having a light-receiving surface and a back surface. A first polycrystalline silicon emitter region of a first conductivity type is disposed on a first thin dielectric layer disposed on the back surface of the substrate. A second polycrystalline silicon emitter region of a second, different, conductivity type is disposed on a second thin dielectric layer disposed on the back surface of the substrate. A third thin dielectric layer is disposed over an exposed outer portion of the first polycrystalline silicon emitter region and is disposed laterally directly between the first and second polycrystalline silicon emitter regions. A first conductive contact structure is disposed on the first polycrystalline silicon emitter region.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: September 6, 2022
    Assignee: SunPower Corporation
    Inventors: David D. Smith, Timothy Weidman, Scott Harrington, Venkatasubramani Balu
  • Patent number: 11437528
    Abstract: Contact holes of solar cells are formed by laser ablation to accommodate various solar cell designs. Use of a laser to form the contact holes is facilitated by replacing films formed on the diffusion regions with a film that has substantially uniform thickness. Contact holes may be formed to deep diffusion regions to increase the laser ablation process margins. The laser configuration may be tailored to form contact holes through dielectric films of varying thicknesses.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: September 6, 2022
    Assignee: SunPower Corporation
    Inventors: Gabriel Harley, David D. Smith, Tim Dennis, Ann Waldhauer, Taeseok Kim, Peter John Cousins
  • Publication number: 20220262966
    Abstract: Tri-layer semiconductor stacks for patterning features on solar cells, and the resulting solar cells, are described herein. In an example, a solar cell includes a substrate. A semiconductor structure is disposed above the substrate. The semiconductor structure includes a P-type semiconductor layer disposed directly on a first semiconductor layer. A third semiconductor layer is disposed directly on the P-type semiconductor layer. An outermost edge of the third semiconductor layer is laterally recessed from an outermost edge of the first semiconductor layer by a width. An outermost edge of the P-type semiconductor layer is sloped from the outermost edge of the third semiconductor layer to the outermost edge of the third semiconductor layer. A conductive contact structure is electrically connected to the semiconductor structure.
    Type: Application
    Filed: May 6, 2022
    Publication date: August 18, 2022
    Inventors: Kieran Mark Tracy, David D. Smith, Venkatasubramani Balu, Asnat Masad, Ann Waldhauer
  • Publication number: 20220209037
    Abstract: A solar cell includes polysilicon P-type and N-type doped regions on a backside of a substrate, such as a silicon wafer. A trench structure separates the P-type doped region from the N-type doped region. Each of the P-type and N-type doped regions may be formed over a thin dielectric layer. The trench structure may include a textured surface for increased solar radiation collection. Among other advantages, the resulting structure increases efficiency by providing isolation between adjacent P-type and N-type doped regions, thereby preventing recombination in a space charge region where the doped regions would have touched.
    Type: Application
    Filed: November 18, 2021
    Publication date: June 30, 2022
    Applicant: SunPower Corporation
    Inventor: David D. SMITH
  • Patent number: 11355654
    Abstract: Tri-layer semiconductor stacks for patterning features on solar cells, and the resulting solar cells, are described herein. In an example, a solar cell includes a substrate. A semiconductor structure is disposed above the substrate. The semiconductor structure includes a P-type semiconductor layer disposed directly on a first semiconductor layer. A third semiconductor layer is disposed directly on the P-type semiconductor layer. An outermost edge of the third semiconductor layer is laterally recessed from an outermost edge of the first semiconductor layer by a width. An outermost edge of the P-type semiconductor layer is sloped from the outermost edge of the third semiconductor layer to the outermost edge of the third semiconductor layer. A conductive contact structure is electrically connected to the semiconductor structure.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: June 7, 2022
    Assignee: SunPower Corporation
    Inventors: Kieran Mark Tracy, David D. Smith, Venkatasubramani Balu, Asnat Masad, Ann Waldhauer
  • Patent number: 11264518
    Abstract: A solar cell is fabricated by etching one or more of its layers without substantially etching another layer of the solar cell. In one embodiment, a copper layer in the solar cell is etched without substantially etching a topmost metallic layer comprising tin. For example, an etchant comprising sulfuric acid and hydrogen peroxide may be employed to etch the copper layer selective to the tin layer. A particular example of the aforementioned etchant is a Co-Bra Etch® etchant modified to comprise about 1% by volume of sulfuric acid, about 4% by volume of phosphoric acid, and about 2% by volume of stabilized hydrogen peroxide. In one embodiment, an aluminum layer in the solar cell is etched without substantially etching the tin layer. For example, an etchant comprising potassium hydroxide may be employed to etch the aluminum layer without substantially etching the tin layer.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: March 1, 2022
    Assignee: SunPower Corporation
    Inventors: Douglas H. Rose, Pongsthorn Uralwong, David D. Smith
  • Patent number: 11251315
    Abstract: A method of fabricating a solar cell can include forming a dielectric region on a silicon substrate. The method can also include forming an emitter region over the dielectric region and forming a dopant region on a surface of the silicon substrate. In an embodiment, the method can include heating the silicon substrate at a temperature above 900 degrees Celsius to getter impurities to the emitter region and drive dopants from the dopant region to a portion of the silicon substrate.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: February 15, 2022
    Assignee: SunPower Corporation
    Inventors: David D. Smith, Tim Dennis, Russelle De Jesus Tabajonda
  • Publication number: 20220029038
    Abstract: The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.
    Type: Application
    Filed: October 12, 2021
    Publication date: January 27, 2022
    Applicant: SunPower Corporation
    Inventors: Gabriel HARLEY, David D. SMITH, Peter John COUSINS