Patents by Inventor David Finn

David Finn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150269472
    Abstract: The planar antenna (PA) of a transponder chip module (TCM) may have a U-shaped portion so that an outer end (OE) of the antenna may be positioned close to an RFID chip (IC) disposed at a central area of a module tape (MT) for the transponder chip module. A module tape (MT2) may have contact pads (CP) on one side thereof and a connection bridge (CBR) on another side thereof, and may be joined with a module tape (MT1) having a planar antenna (PA). Metal of a conductive layer (CL) within a conductive element such as a coupling frame (CF) or a planar antenna (PA) may be scribed to have many small segments. A metal sheet may be stamped to have contact side metallization, and joined with a module tape (MT) having a planar antenna (PA).
    Type: Application
    Filed: February 11, 2015
    Publication date: September 24, 2015
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Publication number: 20150269477
    Abstract: A dual-interface metal hybrid smartcard comprising a plastic card body (CB); a metal slug (MS) disposed in the card body; and a booster antenna (BA) disposed in the card body. The metal slug may have a surface area which is at least 50% of a surface area of the card body, and may comprise titanium or alloys thereof. A antenna chip module (AM) having an antenna (MA) and contact pads (CP) may be disposed in an opening of the card body. The metal slug may comprise two or more separate metal slug components (MS-1, MS-2), which may overlap one another or which may be disposed at different locations in the card body (CB), without overlapping one another. The first metal slug component (MS-1) may be disposed around a peripheral portion of the card body (CB) as an “open loop” discontinuous metal frame around (external to) the booster antenna (BA). The second metal slug component (MS-2) may be disposed internal to the card antenna (CA) component of the booster antenna (BA).
    Type: Application
    Filed: March 18, 2015
    Publication date: September 24, 2015
    Inventors: David Finn, Mustafa Lotya, Darren Molloy, Klaus Ummenhofer
  • Publication number: 20150269471
    Abstract: The planar antenna (PA) of a transponder chip module (TCM) may have a U-shaped portion so that an outer end (OE) of the antenna may be positioned close to an RFID chip (IC) disposed at a central area of a module tape (MT) for the transponder chip module. A module tape (MT2) may have contact pads (CP) on one side thereof and a connection bridge (CBR) on another side thereof, and may be joined with a module tape (MT1) having a planar antenna (PA). Metal of a conductive layer (CL) within a conductive element such as a coupling frame (CF) or a planar antenna (PA) may be scribed to have many small segments. A metal sheet may be stamped to have contact side metallization, and joined with a module tape (MT) having a planar antenna (PA).
    Type: Application
    Filed: February 11, 2015
    Publication date: September 24, 2015
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Publication number: 20150269474
    Abstract: The planar antenna (PA) of a transponder chip module (TCM) may have a U-shaped portion so that an outer end (OE) of the antenna may be positioned close to an RFID chip (IC) disposed at a central area of a module tape (MT) for the transponder chip module. A module tape (MT2) may have contact pads (CP) on one side thereof and a connection bridge (CBR) on another side thereof, and may be joined with a module tape (MT1) having a planar antenna (PA). Metal of a conductive layer (CL) within a conductive element such as a coupling frame (CF) or a planar antenna (PA) may be scribed to have many small segments. A metal sheet may be stamped to have contact side metallization, and joined with a module tape (MT) having a planar antenna (PA).
    Type: Application
    Filed: February 11, 2015
    Publication date: September 24, 2015
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Publication number: 20150235122
    Abstract: Card body (CB) for a dual interface smart card (SC) comprising a metal foil (MF) or metallized layer (ML). An opening in the metal layer may be sized so that a coupler coil (CC) of a booster antenna (BA) is exposed. Improving coupling between a contactless reader and a transponder comprising providing a patch booster antenna (PBA) on a substrate disposed on the reader. Various booster antenna designs are disclosed.
    Type: Application
    Filed: December 9, 2014
    Publication date: August 20, 2015
    Inventors: David Finn, Klaus Ummenhofer
  • Patent number: 9109725
    Abstract: An offshore system for drilling or production includes a buoyant hull. In addition, the offshore system includes a topside mounted to the hull and positioned above the surface of the water. Further, the offshore system includes a conductor having a lower end disposed in the sea bed below the sea floor and an upper end coupled to the topside. Still further, the offshore system includes a bend restrictor disposed about the conductor. The bend restrictor has a lower end positioned in the sea bed below the sea floor and an upper end positioned above the sea floor.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: August 18, 2015
    Assignee: HORTON WISON DEEPWATER, INC.
    Inventors: James V. Maher, IV, Lyle David Finn
  • Patent number: 9112272
    Abstract: Winding a module antenna (MA) for an antenna module (AM) on a tubular support structure (SS) having have a lid structure (LD) or a planar tool (PT) disposed at its free end to constrain the windings. Alternatively, winding wire coils for module antennas (MA) on coil winding forms (CWF, FIG. 26) and transferring them to a module tape (MT). Double-sided and single-sided module tapes (MT) having vias and openings (h) are disclosed. Connection bridges (CBR) formed within, between or surrounding the contact pads (CP) are disclosed. Various configurations for components (CA, CC, EA) of booster antenna (BA) are disclosed. A coupler coil (CC) has an inner winding (iw) and an outer winding (ow). Techniques for embedding wire and for bonding wire are disclosed.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: August 18, 2015
    Assignee: Feinics Amatech Teoranta
    Inventors: David Finn, Jan Thomas Czornack, Mustafa Lotya, Theodor Fendt, Klaus Ummenhofer
  • Publication number: 20150227829
    Abstract: Secure inlays for secure documents such as a passport comprising an inlay substrate may have laser-ablated recesses within which a chip module is installed. The inlay substrate may include two layers, and the antenna wire may be between the two layers. A moisture-curing polyurethane hot melt adhesive may be used to laminate a cover layer and the additional inlay substrate layers. The adhesive layer may be used (i) as a sealant, to protect the interconnections, (ii) as a fixing mechanism for the chip module, and (iii) as an adhesive for joining the two substrates (inlay and leadframe substrates) together. Method and apparatus are disclosed.
    Type: Application
    Filed: February 16, 2015
    Publication date: August 13, 2015
    Inventors: David Finn, Alan Considine, Patrick Gerard Conneely
  • Patent number: 9104955
    Abstract: During mounting to an inlay substrate, at least one end portion (including end) of an antenna wire is positioned directly over a terminal of the chip module for subsequent connecting thereto. A sonotrode is disclosed with a cutter above the capillary for cutting or nicking the wire. Insulation may be removed from a portion of the wire. The antenna may comprise two separate stubs, each having an end portion (including end) positioned over a terminal of the chip module. Additional techniques for mounting the antenna wire are disclosed.
    Type: Grant
    Filed: June 30, 2013
    Date of Patent: August 11, 2015
    Assignee: Feinics Amatech Teoranta
    Inventor: David Finn
  • Publication number: 20150178615
    Abstract: A dual-interface smart card having a booster antenna with coupler coil in its card body, and a metallized face plate having a window opening for the antenna module. Performance may be improved by one or more of making the window opening substantially larger than the antenna module, providing perforations through the face plate, disposing ferrite material between the face plate and the booster antenna. Additionally, by one or more of modifying contact pads on the antenna module, disposing a compensating loop under the booster antenna, offsetting the antenna module with respect to the coupler coil, arranging the booster antenna as a quasi-dipole, providing the module antenna with capacitive stubs, and disposing a ferrite element in the antenna module between the module antenna and the contact pads.
    Type: Application
    Filed: November 25, 2014
    Publication date: June 25, 2015
    Inventor: David Finn
  • Publication number: 20150161503
    Abstract: Forming antenna structures having turns of wire, foil or conductive material on a an antenna substrate or in a layer of adhesive layer on a carrier substrate, transferring the antenna structures individually or many at once to corresponding transponder sites on an inlay substrate and connecting the aligned termination ends of the antenna structures to terminal areas of RFID chip modules at the transponder sites. Transferring may be performed by various means such as laminating (heat and pressure), or heating the antenna structures directly or indirectly. The antenna substrate may be in web format or sheet format. Automated manufacturing procedures are disclosed. Kits having components for manufacturing inlay substrates, inlays and secure documents are disclosed. Various features of an inlay substrate and chip module are disclosed.
    Type: Application
    Filed: December 9, 2014
    Publication date: June 11, 2015
    Inventor: David Finn
  • Patent number: 9053404
    Abstract: Channels may be formed in the inlay substrate of a transponder, such as by laser ablation, and the antenna wire may subsequently be laid in the channels. Laying the wire in a channel ensures that it substantially fully embedded in the substrate, thereby eliminating a need for pressing the wire into the substrate. The channels may be tapered, or profiled, to enhance adhesion of a self-bonding wire. A recess for the chip module can also be formed using laser ablation, and insulation may be removed from end portions of the antenna wire using laser ablation. Laser ablation may also be used to create various mechanical and security features.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: June 9, 2015
    Inventor: David Finn
  • Publication number: 20150136856
    Abstract: In a smart card having an antenna structure and a metal layer, an insulator layer is formed between the antenna structure and the metal layer to compensate for the attenuation due to the metal layer. The thickness of the insulator layer affects the capacitive coupling between the antenna structure and the metal layer and is selected to have a value which optimizes the transmission/reception of signals between the card and a card reader.
    Type: Application
    Filed: November 17, 2014
    Publication date: May 21, 2015
    Inventors: JOHN HERSLOW, MICHELE LOGAN, DAVID FINN
  • Publication number: 20150136858
    Abstract: A capacitive coupling enhanced (CCE) transponder chip module (TCM) comprises an RFID chip (CM, IC), optionally contact pads (CP), a module antenna (MA), and a coupling frame (CF), all on a common substrate or module tape (MT). The coupling frame (CF, 320A) may be in the form of a ring, having an inner edge (IE), an outer edge IE, 324) and a central opening (OP), disposed closely adjacent to and surrounding the module antenna (MA). A slit (S) may extend from the inner edge (IE) to the outer edge (OE) of the coupling frame (CF) so that the coupling frame (CF) is “open loop”. An RFID device may comprise a transponder chip module (TCM) having a module antenna (MA), a device substrate (DS), and an antenna structure (AS) disposed on the device substrate (DS) and connected with the module antenna (MA). A portion of a conductive layer (CL, 904) remaining after etching a module antenna (MA) may be segmented to have several smaller isolated conductive structures.
    Type: Application
    Filed: November 24, 2014
    Publication date: May 21, 2015
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Patent number: 9033250
    Abstract: A booster antenna (BA) for a smart card comprises a card antenna (CA) component extending around a periphery of a card body (CB), a coupler coil (CC) component at a location for an antenna module (AM), and an extension antenna (EA) contributing to the inductance of the booster antenna (BA). A method of wire embedding is also disclosed, by controlling a force and ultrasonic power applied by an embedding tool at different positions on the card body (CB).
    Type: Grant
    Filed: September 8, 2013
    Date of Patent: May 19, 2015
    Assignee: Féinics AmaTech Teoranta
    Inventors: David Finn, Patrick Gerard Conneely, Jan Thomas Czornack, Klaus Ummenhofer, Mustafa Lotya
  • Publication number: 20150129665
    Abstract: Connection bridges (CBR) for dual-interface transponder chip modules (TCM) 200 may have an area which is substantially equal to or greater than an area of a contact pad (CP) of a contact pad array (CPA). A given connection bridge may be L-shaped and may comprise (i) a first portion disposed external to the contact pad array and extending parallel to the insertion direction, and (ii) a second portion extending from an end of the first portion perpendicular to the insertion direction to within the contact pad array (CPA) such as between C1 and C5. The connection bridge may extend around a corner of the contact pad array, may be large enough to accommodate wire bonding, and may be integral with a coupling frame (CF) extending around the contact pad array. The transponder chip modules may be integrated into a smart card (SC).
    Type: Application
    Filed: October 27, 2014
    Publication date: May 14, 2015
    Inventors: David Finn, Mustafa Lotya
  • Patent number: 9027227
    Abstract: Forming antenna structures having several conductor turns (wire, foil, conductive material) on a an antenna substrate (carrier layer or film or web), removing the antenna structures individually from the antenna substrate using pick & place gantry or by means of die punching, laser cutting or laminating, and transferring the antenna structure with it's end portions (termination ends) in a fixed position for mounting onto or into selected transponder sites on an inlay substrate, and connecting the aligned termination ends of the antenna structure to an RFID (radio frequency identification) chip or chip module disposed on or in the inlay substrate. A contact transfer process is capable of transferring several antenna structures simultaneously to several transponder sites.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: May 12, 2015
    Assignee: Féinics Amatech Teoranta
    Inventor: David Finn
  • Patent number: 9016591
    Abstract: High density metal or mineral particles, sized to be less than 10 microns, are compounded into a base plastic layer to form a compounded composite layer used to form the core layer of the card, any layer of the card or the entire card. The amount of high density particles compounded into the plastic layer is controlled so the card: (a) is at least twice as heavy as any standard PVC card; (b) can be manufactured using standard current plastic card equipment and tooling. (c) is not brittle; and (d) is electrically non-conductive whereby it is not subject to electrostatic discharge properties. The card can include RFID functionality integrated into the card body. The compounded composite layer does not interfere with the integrity of the data communication between an RFID chip packaged in an antenna module and coupled with an embedded booster antenna, and a contactless reader or terminal.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: April 28, 2015
    Assignee: Composecure, LLC
    Inventors: John Herslow, Bradley A. Paulson, David Finn
  • Patent number: 8991712
    Abstract: A data carrier such as a smart card comprising an antenna module (AM) and a booster antenna (BA). The booster antenna (BA) has an outer winding (OW) and an inner winding (IW), each of which has an inner end (IE) and an outer end (OE). A coupler coil (CC) is provided, connecting the outer end (OE, b) of the outer winding (OW) and the inner end (IE, e) of the inner winding (IW). The inner end (IE, a) of the outer winding (OW) and the outer end (OE, f) of the inner winding (IW) are left un-connected (free floating). The coupler coil (CC) may have a clockwise (CW) or counter-clockwise (CCW) sense which is the same as or opposite to the sense (CW or CCW) of the outer and inner windings. Various configurations of booster antennas (BA) are disclosed.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: March 31, 2015
    Assignee: Féinics Amatech Teoranta
    Inventors: David Finn, Klaus Ummenhofer
  • Patent number: 8955759
    Abstract: Secure inlays for secure documents such as a passport comprising an inlay substrate may have laser ablated recesses within which a chip module is installed. Channels for an antenna wire may be formed in a surface of the substrate. Instead of using wire, the channels may be filled with a flowable, conductive material. Patches homogenous with the substrate layer may be used to protect and seal the chip and interconnection area. The inlay substrate may include two layers, and the antenna wire may be between the two layers. A moisture-curing polyurethane hot melt adhesive may be used to laminate a cover layer and the additional inlay substrate layers. The adhesive layer may include metal nanoscale powder and ink for electro-magnetic shielding. Additional security elements may include material that is optically changeable by an electro-magnetic field. Ferrite-containing layers may be incorporated in the inlay substrate.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: February 17, 2015
    Assignee: Féinics AmaTech Tearanta
    Inventor: David Finn