Patents by Inventor David Gani

David Gani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11942496
    Abstract: A digital image sensor package includes an image sensor substrate and a glass covering. The image sensor substrate carries photodiodes. The glass covering has a bottom surface, a top surface opposite the bottom surface, and a sidewall delimiting a perimeter edge of the glass covering. The glass covering overlies the photodiodes. A surface area of the top surface of the glass covering is greater than a surface area of the bottom surface of the glass covering such that the sidewall is anti-perpendicular to the top and bottom surfaces of the glass.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: March 26, 2024
    Assignee: STMicroelectronics Pte Ltd
    Inventors: Laurent Herard, David Gani
  • Patent number: 11908831
    Abstract: Trenches are opened from a top surface of a production wafer that extend down through scribe areas to a depth that is only partially through a semiconductor substrate. Prior to performing a bumping process, a first handle is attached to the top surface of the production wafer. A back surface of the semiconductor substrate is then thinned to reach the trenches and form a wafer level chip scale package at each integrated circuit location delimited by the trenches. A second handle is then attached to a bottom surface of the thinned semiconductor substrate, and the first handle is removed to expose underbump metallization pads at the top surface. The bumping process is then performed to form a solder ball at each of the exposed underbump metallization pads.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: February 20, 2024
    Assignee: STMicroelectronics PTE LTD
    Inventors: Chun Yi Teng, David Gani
  • Patent number: 11828875
    Abstract: A semiconductor package that is a proximity sensor includes a light transmitting die, a light receiving die, an ambient light sensor, a cap, and a substrate. The light receiving die and the light transmitting die are coupled to the substrate. The cap is coupled to the substrate forming a first chamber around the light transmitting die and a second chamber around the light receiving die. The cap further includes a recess with contact pads. The ambient light sensor is mounted within the recess of the cap and coupled to the contact pads. The cap includes electrical traces that are coupled to the contact pads within the recess coupling the ambient light sensor to the substrate. By utilizing a cap with a recess containing contact pads, a proximity sensor can be formed in a single semiconductor package all while maintaining a compact size and reducing the manufacturing costs of proximity sensors.
    Type: Grant
    Filed: December 14, 2021
    Date of Patent: November 28, 2023
    Assignee: STMICROELECTRONICS PTE LTD
    Inventor: David Gani
  • Publication number: 20230307302
    Abstract: A semiconductor package includes a silicon substrate with an active surface and an inactive surface. A semiconductor device, such as an image, light, or optical sensor, is formed in the active surface and disposed on the substrate. A glass plate is coupled to the substrate with adhesive. The glass plate includes a sensor area that corresponds to the area of the semiconductor device and holes through the glass plate that are generally positioned around the sensor area of the glass plate. During formation of the package, the holes through the glass plate allow gas released by the adhesive to escape the package and prevent formation of a gas bubble.
    Type: Application
    Filed: March 15, 2023
    Publication date: September 28, 2023
    Applicants: STMICROELECTRONICS LTD, STMICROELECTRONICS PTE LTD
    Inventors: David GANI, Hui-Tzu Wang
  • Patent number: 11742437
    Abstract: The present disclosure is directed to a package, such as a wafer level chip scale package (WLCSP), with a die coupled to a central portion of a transparent substrate. The transparent substrate includes a central portion having and a peripheral portion surrounding the central portion. The package includes a conductive layer coupled to a contact of the die within the package that extends from the transparent substrate to an active surface of the package. The active surface is utilized to mount the package within an electronic device or to a printed circuit board (PCB) accordingly. The package includes a first insulating layer separating the die from the conductive layer, and a second insulating layer on the conductive layer.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: August 29, 2023
    Assignees: STMICROELECTRONICS LTD, STMICROELECTRONICS PTE LTD
    Inventors: David Gani, Yiying Kuo
  • Publication number: 20230230949
    Abstract: A semiconductor package includes a die and a first lamination layer on the die with openings through the first lamination layer. A redistribution layer is on the first lamination layer and extends through the openings to the die. A plurality of conductive extensions are on the redistribution layer with each stud including a first surface on the redistribution layer, a second surface opposite to the first surface, and a sidewall between the first surface and the second surface. A second lamination layer is on the redistribution layer and the first lamination layer with the die encapsulated in molding compound. The second lamination layer is removed around the conductive extensions to expose the second surface and at least a portion of the sidewall of each stud to improve solder bond strength when mounting the package to a circuit board.
    Type: Application
    Filed: January 12, 2023
    Publication date: July 20, 2023
    Applicant: STMICROELECTRONICS PTE LTD
    Inventors: Yong CHEN, David GANI
  • Publication number: 20230197688
    Abstract: A multi-chip package including a first integrated circuit and a second integrated circuit. The first integrated circuit includes a first side having a first conductive layer, a second side having a second conductive layer, and an edge, the first conductive layer coupled to the second conductive layer at a location adjacent to the edge. The second integrated circuit is coupled to the second conductive layer of the first integrated circuit.
    Type: Application
    Filed: February 9, 2023
    Publication date: June 22, 2023
    Applicant: STMICROELECTRONICS PTE LTD
    Inventors: Yong CHEN, David GANI
  • Patent number: 11585847
    Abstract: A method of testing an integrated circuit die (IC) for cracks includes performing an assembly process on a wafer including multiple ICs including: lowering a tip of a first manipulator arm to contact and pick up a given IC, flipping the given IC such that a surface of the IC facing the wafer faces a different direction, and transferring the IC to a tip of a second manipulator arm, applying pressure from the second manipulator arm to the given IC such that pogo pins extending from the tip of the first manipulator arm make electrical contact with conductive areas of the IC for connection to a crack detector on the IC, and performing a conductivity test on the crack detector using the pogo pins. If the conductivity test indicates a lack of presence of a crack, then the second manipulator arm is used to continue processing of the given IC.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: February 21, 2023
    Assignee: STMicroelectronics Pte Ltd
    Inventors: Pedro Jr Santos Peralta, David Gani
  • Patent number: 11581280
    Abstract: The present disclosure is directed to a wafer level chip scale package (WLCSP) with various combinations of contacts and Under Bump Metallizations (UBMs) having different structures and different amounts solder coupled to the contacts and UBMs. Although the contacts have different structures and the volume of solder differs, the total standoff height along the WLCSP remains substantially the same. Each portion of solder coupled to each respective contact and UBM includes a point furthest away from an active surface of a die of the WLCSP. Each point of each respective portion of solder is co-planar with each other respective point of the other respective portions of solder. Additionally, the contacts with various and different structures are positioned accordingly on the active surface of the die of the WLCSP.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: February 14, 2023
    Assignee: STMICROELECTRONICS PTE LTD
    Inventor: David Gani
  • Patent number: 11581289
    Abstract: A multi-chip package including a first integrated circuit and a second integrated circuit. The first integrated circuit includes a first side having a first conductive layer, a second side having a second conductive layer, and an edge, the first conductive layer coupled to the second conductive layer at a location adjacent to the edge. The second integrated circuit is coupled to the second conductive layer of the first integrated circuit.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: February 14, 2023
    Assignee: STMICROELECTRONICS PTE LTD
    Inventors: Yong Chen, David Gani
  • Patent number: 11562937
    Abstract: A semiconductor package having a die with a sidewall protected by molding compound, and methods of forming the same are disclosed. The package includes a die with a first surface opposite a second surface and sidewalls extending between the first and second surfaces. A redistribution layer is formed on the first surface of each die. An area of the first surface of the die is greater than an area of the redistribution layer, such that a portion of the first surface of the die is exposed. When molding compound is formed over the die and the redistribution layer to form a semiconductor package, the molding compound is on the first surface of the die between an outer edge of the redistribution layer and an outer edge of the first surface. The molding compound is also on the sidewalls of the die, which provides protection against chipping or cracking during transport.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: January 24, 2023
    Assignee: STMICROELECTRONICS PTE LTD
    Inventors: Yun Liu, David Gani
  • Patent number: 11527511
    Abstract: An electronic device includes a support substrate to which a first electronic chip and a second electronic chip are mounted in a position situated on top of one another. First electrical connection elements are interposed between the first electronic chip and the support substrate. Second electrical connection elements are interposed between the second electronic chip and the support substrate and are situated at a distance from a periphery of the first electronic chip. Third electrical connection elements are interposed between the first electronic chip and the second electronic chip.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: December 13, 2022
    Assignees: STMicroelectronics Pte Ltd, STMicroelectronics (Grenoble 2) SAS
    Inventors: David Gani, Jean-Michel Riviere
  • Patent number: 11502029
    Abstract: The present disclosure provides devices and methods in which a semiconductor chip has a reduced size and thickness. The device is manufactured by utilizing a sacrificial or dummy silicon wafer. A recess is formed in the dummy silicon wafer where the semiconductor chip is mounted in the recess. The space between the dummy silicon wafer and the chip is filled with underfill material. The dummy silicon wafer and the backside of the chip are etched using any suitable etching process until the dummy silicon wafer is removed, and the thickness of the chip is reduced. With this process, the overall thickness of the semiconductor chip can be thinned down to less than 50 ?m in some embodiments. The ultra-thin semiconductor chip can be incorporated in manufacturing flexible/rollable display panels, foldable mobile devices, wearable displays, or any other electrical or electronic devices.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: November 15, 2022
    Assignees: STMICROELECTRONICS PTE LTD, STMICROELECTRONICS (ROUSSET) SAS
    Inventors: Laurent Herard, David Parker, David Gani
  • Publication number: 20220291277
    Abstract: A method of testing an integrated circuit die (IC) for cracks includes performing an assembly process on a wafer including multiple ICs including: lowering a tip of a first manipulator arm to contact and pick up a given IC, flipping the given IC such that a surface of the IC facing the wafer faces a different direction, and transferring the IC to a tip of a second manipulator arm, applying pressure from the second manipulator arm to the given IC such that pogo pins extending from the tip of the first manipulator arm make electrical contact with conductive areas of the IC for connection to a crack detector on the IC, and performing a conductivity test on the crack detector using the pogo pins. If the conductivity test indicates a lack of presence of a crack, then the second manipulator arm is used to continue processing of the given IC.
    Type: Application
    Filed: May 27, 2022
    Publication date: September 15, 2022
    Applicant: STMicroelectronics Pte Ltd
    Inventors: Pedro Jr Santos PERALTA, David GANI
  • Patent number: 11404355
    Abstract: A semiconductor package includes a lead frame, a die, a discrete electrical component, and electrical connections. The lead frame includes leads and a die pad. Some of the leads include engraved regions that have recesses therein and the die pad may include an engraved region or multiple engraved regions. Each engraved region is formed to contain and confine a conductive adhesive from flowing over the edges of the engraved leads or the die pad. The boundary confines the conductive adhesive to the appropriate location on the engraved lead or the engraved die pad when being placed on the engraved regions. By utilizing a lead frame with engraved regions, the flow of the conductive adhesive or the wettability of the conductive adhesive can be contained and confined to the appropriate areas of the engraved lead or engraved die pad such that a conductive adhesive does not cause cross-talk between electrical components within a semiconductor package or short circuiting within a semiconductor package.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: August 2, 2022
    Assignees: STMICROELECTRONICS PTE LTD, STMICROELECTRONICS, INC.
    Inventors: Rennier Rodriguez, Bryan Christian Bacquian, Maiden Grace Maming, David Gani
  • Publication number: 20220208819
    Abstract: The present disclosure is directed to a package that includes a transparent layer that is on and covers a sensor of a die as well as a plurality of electrical connections that extend from a first surface of the package to the second surface of the package opposite to the first surface. In at least one embodiment of a package, the electrical connections each include a conductive structure that extends through the transparent layer to a first side of a corresponding contact pad of the die, and at least one electrical that extends into the second surface of the die to a second side of the corresponding contact pad that is opposite to the first side. In at least another embodiment of a package, the electrical connections include a conductive structure that extends through a molding compound to a first side of a corresponding contact pad of the die, and at least one electrical via that extends into the second surface of the die to a second side of the corresponding contact pad opposite to the first side.
    Type: Application
    Filed: December 20, 2021
    Publication date: June 30, 2022
    Applicants: STMICROELECTRONICS LTD, STMICROELECTRONICS PTE LTD
    Inventors: David GANI, Yiying KUO
  • Patent number: 11366156
    Abstract: A method of testing integrated circuit die for presence of a crack includes performing back end integrated circuit fabrication processes on a wafer having a plurality of integrated circuit die, the back end fabrication including an assembly process. The assembly process includes a) lowering a tip of a first manipulator arm to contact a given die such that pogo pins extending from the tip make electrical contact with conductive areas on the given die so that the pogo pins are electrically connected to a crack detector on the given die, b) picking up the given die using the first manipulator arm, and c) performing a conductivity test on the crack detector using the pogo pins to determine presence of a crack in the given die that extends from a periphery of the die, through a die seal ring of the die, and into an integrated circuit region of the die.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: June 21, 2022
    Assignee: STMicroelectronics Pte Ltd
    Inventors: Pedro Jr Santos Peralta, David Gani
  • Publication number: 20220122941
    Abstract: Trenches are opened from a top surface of a production wafer that extend down through scribe areas to a depth that is only partially through a semiconductor substrate. Prior to performing a bumping process, a first handle is attached to the top surface of the production wafer. A back surface of the semiconductor substrate is then thinned to reach the trenches and form a wafer level chip scale package at each integrated circuit location delimited by the trenches. A second handle is then attached to a bottom surface of the thinned semiconductor substrate, and the first handle is removed to expose underbump metallization pads at the top surface. The bumping process is then performed to form a solder ball at each of the exposed underbump metallization pads.
    Type: Application
    Filed: September 23, 2021
    Publication date: April 21, 2022
    Applicant: STMicroelectronics PTE LTD
    Inventors: Chun Yi TENG, David GANI
  • Publication number: 20220107392
    Abstract: A semiconductor package that is a proximity sensor includes a light transmitting die, a light receiving die, an ambient light sensor, a cap, and a substrate. The light receiving die and the light transmitting die are coupled to the substrate. The cap is coupled to the substrate forming a first chamber around the light transmitting die and a second chamber around the light receiving die. The cap further includes a recess with contact pads. The ambient light sensor is mounted within the recess of the cap and coupled to the contact pads. The cap includes electrical traces that are coupled to the contact pads within the recess coupling the ambient light sensor to the substrate. By utilizing a cap with a recess containing contact pads, a proximity sensor can be formed in a single semiconductor package all while maintaining a compact size and reducing the manufacturing costs of proximity sensors.
    Type: Application
    Filed: December 14, 2021
    Publication date: April 7, 2022
    Applicant: STMICROELECTRONICS PTE LTD
    Inventor: David GANI
  • Patent number: 11270946
    Abstract: The present disclosure is directed to a package that includes openings that extend into the package. The openings are filled with a conductive material to electrically couple a first die in the package to a second die in the package. The conductive material that fills the openings forms electrical interconnection bridges between the first die and the second die. The openings in the package may be formed using a laser and a non-doped molding compound, a doped molding compound, or a combination of doped or non-doped molding compounds.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: March 8, 2022
    Assignee: STMICROELECTRONICS PTE LTD
    Inventors: Yong Chen, David Gani