Patents by Inventor David H. Wells

David H. Wells has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7611980
    Abstract: Single spacer processes for multiplying pitch by a factor greater than two are provided. In one embodiment, n, where n?2, tiers of stacked mandrels are formed over a substrate, each of the n tiers comprising a plurality of mandrels substantially parallel to one another. Mandrels at tier n are over and parallel to mandrels at tier n?1, and the distance between adjoining mandrels at tier n is greater than the distance between adjoining mandrels at tier n?1. Spacers are simultaneously formed on sidewalls of the mandrels. Exposed portions of the mandrels are etched away and a pattern of lines defined by the spacers is transferred to the substrate.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: November 3, 2009
    Assignee: Micron Technology, Inc.
    Inventors: David H. Wells, Mirzafer K. Abatchev
  • Publication number: 20090271758
    Abstract: Methods of forming arrays of small, densely spaced holes or pillars for use in integrated circuits are disclosed. Various pattern transfer and etching steps can be used, in combination with pitch-reduction techniques, to create densely-packed features. Conventional photolithography steps can be used in combination with pitch-reduction techniques to form superimposed patterns of crossing elongate features with pillars at the intersections. Spacers are simultaneously applied to sidewalls of both sets of crossing lines to produce a pitch-doubled grid pattern. The pillars facilitate rows of spacers bridging columns of spacers.
    Type: Application
    Filed: July 7, 2009
    Publication date: October 29, 2009
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: David H. Wells
  • Patent number: 7601608
    Abstract: A method of forming a buried digit line is disclosed. Sacrificial spacers are formed along the sidewalls of an isolation trench, which is then filled with a sacrificial material. One spacer is masked while the other spacer is removed and an etch step into the substrate beneath the removed spacer forms an isolation window. Insulating liners are then formed along the sidewalls of the emptied trench, including into the isolation window. A digit line recess is then formed through the bottom of the trench between the insulating liners, which double as masks to self-align this etch. The digit line recess is then filled with metal and recessed back, with an optional prior insulating element deposited and recessed back in the bottom of the recess.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: October 13, 2009
    Assignee: Micron Technologies, Inc.
    Inventor: David H. Wells
  • Publication number: 20090236666
    Abstract: Some embodiments include formation of at least one cavity in a first semiconductor material, followed by epitaxially growing a second semiconductor material over the first semiconductor material and bridging across the at least one cavity. The cavity may be left open, or material may be provided within the cavity. The material provided within the cavity may be suitable for forming, for example, one or more of electromagnetic radiation interaction components, transistor gates, insulative structures, and coolant structures. Some embodiments include one or more of transistor devices, electromagnetic radiation interaction components, transistor devices, coolant structures, insulative structures and gas reservoirs.
    Type: Application
    Filed: May 29, 2009
    Publication date: September 24, 2009
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: David H. Wells, Eric R. Blomiley
  • Patent number: 7572572
    Abstract: Methods of forming arrays of small, densely spaced holes or pillars for use in integrated circuits are disclosed. Various pattern transfer and etching steps can be used, in combination with pitch-reduction techniques, to create densely-packed features. Conventional photolithography steps can be used in combination with pitch-reduction techniques to form superimposed patterns of crossing elongate features with pillars at the intersections. Spacers are simultaneously applied to sidewalls of both sets of crossing lines to produce a pitch-doubled grid pattern. The pillars facilitate rows of spacers bridging columns of spacers.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: August 11, 2009
    Assignee: Micron Technology, Inc.
    Inventor: David H. Wells
  • Publication number: 20090173982
    Abstract: A memory cell, device, and system include a memory cell having a shared digitline, a storage capacitor, and a plurality of access transistors configured to selectively electrically couple the storage capacitor with the shared digitline. The digitline couples with adjacent memory cells and the plurality of access transistor selects which adjacent memory cell is coupled to the shared digitline. A method of forming the memory cell includes forming a buried digitline in the substrate and a vertical pillar in the substrate immediately adjacent to the buried digitline. A dual gate transistor is formed on the vertical pillar with a first end electrically coupled to the buried digitline and a second end coupled to a storage capacitor formed thereto.
    Type: Application
    Filed: March 17, 2009
    Publication date: July 9, 2009
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: H. Montgomery Manning, David H. Wells
  • Patent number: 7557002
    Abstract: Some embodiments include formation of at least one cavity in a first semiconductor material, followed by epitaxially growing a second semiconductor material over the first semiconductor material and bridging across the at least one cavity. The cavity may be left open, or material may be provided within the cavity. The material provided within the cavity may be suitable for forming, for example, one or more of electromagnetic radiation interaction components, transistor gates, insulative structures, and coolant structures. Some embodiments include one or more of transistor devices, electromagnetic radiation interaction components, transistor devices, coolant structures, insulative structures and gas reservoirs.
    Type: Grant
    Filed: August 18, 2006
    Date of Patent: July 7, 2009
    Assignee: Micron Technology, Inc.
    Inventors: David H. Wells, Eric R. Blomiley
  • Publication number: 20090095997
    Abstract: Memory cell structures, including PSOIs, NANDs, NORs, FinFETs, etc., and methods of fabrication have been described that include a method of epitaxial silicon growth. The method includes providing a silicon layer on a substrate. A dielectric layer is provided on the silicon layer. A trench is formed in the dielectric layer to expose the silicon layer, the trench having trench walls in the <100> direction. The method includes epitaxially growing silicon between trench walls formed in the dielectric layer.
    Type: Application
    Filed: December 17, 2008
    Publication date: April 16, 2009
    Applicant: Micron Technology, Inc.
    Inventors: David H. Wells, Du Li
  • Patent number: 7504298
    Abstract: A memory cell, device, and system include a memory cell having a shared digitline, a storage capacitor, and a plurality of access transistors configured to selectively electrically couple the storage capacitor with the shared digitline. The digitline couples with adjacent memory cells and the plurality of access transistor selects which adjacent memory cell is coupled to the shared digitline. A method of forming the memory cell includes forming a buried digitline in the substrate and a vertical pillar in the substrate immediately adjacent to the buried digitline. A dual gate transistor is formed on the vertical pillar with a first end electrically coupled to the buried digitline and a second end coupled to a storage capacitor formed thereto.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: March 17, 2009
    Assignee: Micron Technology, Inc.
    Inventors: H. Montgomery Manning, David H. Wells
  • Patent number: 7498265
    Abstract: Memory cell structures, including PSOIs, NANDs, NORs, FinFETs, etc., and methods of fabrication have been described that include a method of epitaxial silicon growth. The method includes providing a silicon layer on a substrate. A dielectric layer is provided on the silicon layer. A trench is formed in the dielectric layer to expose the silicon layer, the trench having trench walls in the <100> direction. The method includes epitaxially growing silicon between trench walls formed in the dielectric layer.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: March 3, 2009
    Assignee: Micron Technology, Inc.
    Inventors: David H. Wells, Du Li
  • Publication number: 20090027938
    Abstract: A three dimensional variable resistance memory array and method of forming the same. The memory array has memory cells in multiple planes in three dimensions. The planes of the memory cells include shared interconnect lines, dually connected to driving and sensing circuits, that are used for addressing the cells for programming and reading. The memory array is formed using only a single patterned mask per central array plane to form the memory cells of such planes.
    Type: Application
    Filed: July 25, 2007
    Publication date: January 29, 2009
    Inventor: David H. Wells
  • Publication number: 20080254627
    Abstract: Variations in the pitch of features formed using pitch multiplication are minimized by separately forming at least two sets of spacers. Mandrels are formed and the positions of their sidewalls are measured. A first set of spacers is formed on the sidewalls. The critical dimension of the spacers is selected based upon the sidewall positions, so that the spacers are centered at desired positions. The mandrels are removed and the spacers are used as mandrels for a subsequent spacer formation. A second material is then deposited on the first set of spacers, with the critical dimensions of the second set of spacers chosen so that these spacers are also centered at their desired positions. The first set of spacers is removed and the second set is used as a mask for etching a substrate. By selecting the critical dimensions of spacers based partly on the measured position of mandrels, the pitch of the spacers can be finely controlled.
    Type: Application
    Filed: May 19, 2008
    Publication date: October 16, 2008
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: David H. Wells
  • Publication number: 20080185647
    Abstract: Some embodiments include methods of forming voids within semiconductor constructions. In some embodiments the voids may be utilized as microstructures for distributing coolant, for guiding electromagnetic radiation, or for separation and/or characterization of materials. Some embodiments include constructions having micro-structures therein which correspond to voids, conduits, insulative structures, semiconductor structures or conductive structures.
    Type: Application
    Filed: March 14, 2007
    Publication date: August 7, 2008
    Inventor: David H. Wells
  • Publication number: 20080187463
    Abstract: Some embodiments include methods of forming voids within semiconductor constructions. In some embodiments the voids may be utilized as microstructures for distributing coolant, for guiding electromagnetic radiation, or for separation and/or characterization of materials. Some embodiments include constructions having micro-structures therein which correspond to voids, conduits, insulative structures, semiconductor structures or conductive structures.
    Type: Application
    Filed: March 14, 2007
    Publication date: August 7, 2008
    Inventor: David H. Wells
  • Publication number: 20080188073
    Abstract: Some embodiments include methods of forming voids within semiconductor constructions. In some embodiments the voids may be utilized as microstructures for distributing coolant, for guiding electromagnetic radiation, or for separation and/or characterization of materials. Some embodiments include constructions having micro-structures therein which correspond to voids, conduits, insulative structures, semiconductor structures or conductive structures.
    Type: Application
    Filed: March 14, 2007
    Publication date: August 7, 2008
    Inventor: David H. Wells
  • Publication number: 20080188019
    Abstract: Some embodiments include methods of forming voids within semiconductor constructions. In some embodiments the voids may be utilized as microstructures for distributing coolant, for guiding electromagnetic radiation, or for separation and/or characterization of materials. Some embodiments include constructions having micro-structures therein which correspond to voids, conduits, insulative structures, semiconductor structures or conductive structures.
    Type: Application
    Filed: March 14, 2007
    Publication date: August 7, 2008
    Inventor: David H. Wells
  • Publication number: 20080188051
    Abstract: Some embodiments include methods of forming voids within semiconductor constructions. In some embodiments the voids may be utilized as microstructures for distributing coolant, for guiding electromagnetic radiation, or for separation and/or characterization of materials. Some embodiments include constructions having micro-structures therein which correspond to voids, conduits, insulative structures, semiconductor structures or conductive structures.
    Type: Application
    Filed: February 7, 2007
    Publication date: August 7, 2008
    Inventor: David H. Wells
  • Patent number: 7396781
    Abstract: Variations in the pitch of features formed using pitch multiplication are minimized by separately forming at least two sets of spacers. Mandrels are formed and the positions of their sidewalls are measured. A first set of spacers is formed on the sideswalls. The critical dimension of the spacers is selected based upon the sidewall positions, so that the spacers are centered at desired positions. The mandrels are removed and the spacers are used as mandrels for a subsequent spacer formation. A second material is then deposited on the first set of spacers, with the critical dimensions of the second set of spacers chosen so that these spacers are also centered at their desired positions. The first set of spacers is removed and the second set is used as a mask for etching a substrate. By selecting the critical dimensions of spacers based partly on the measured position of mandrels, the pitch of the spacers can be finely controlled.
    Type: Grant
    Filed: June 9, 2005
    Date of Patent: July 8, 2008
    Assignee: Micron Technology, Inc.
    Inventor: David H. Wells
  • Publication number: 20080113483
    Abstract: A method of forming staggered heights in a pattern layer of an intermediate semiconductor device structure. The method comprises providing an intermediate semiconductor device structure comprising a pattern layer and a first mask layer, forming first openings in the pattern layer, forming spacers adjacent to etched portions of the pattern layer to reduce a width of the first openings, etching the pattern layer to increase a depth of the first openings, and forming second openings in the pattern layer. A method of forming staggered heights in the pattern layer that includes spacers formed on multiple mask layers is also disclosed. Intermediate semiconductor device structures are also disclosed.
    Type: Application
    Filed: November 15, 2006
    Publication date: May 15, 2008
    Inventor: David H. Wells
  • Patent number: 7372092
    Abstract: A memory cell, device, and system include a memory cell having a shared digitline, a storage capacitor, and a plurality of access transistors configured to selectively electrically couple the storage capacitor with the shared digitline. The digitline couples with adjacent memory cells and the plurality of access transistors selects which adjacent memory cell is coupled to the shared digitline. A method of forming the memory cell includes forming a buried digitline in the substrate and a vertical pillar in the substrate immediately adjacent to the buried digitline. A dual gate transistor is formed on the vertical pillar with a first end electrically coupled to the buried digitline and a second end coupled to a storage capacitor formed thereto.
    Type: Grant
    Filed: May 5, 2005
    Date of Patent: May 13, 2008
    Assignee: Micron Technology, Inc.
    Inventors: H. Montgomery Manning, David H. Wells