Patents by Inventor David Hemker

David Hemker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6939796
    Abstract: A system and method for planarizing a patterned semiconductor substrate includes receiving a patterned semiconductor substrate. The patterned semiconductor substrate having a conductive interconnect material filling multiple of features in the pattern. The conductive interconnect material having an overburden portion. The overburden portion having a localized non-uniformity. A bulk portion of the overburden portion is removed to planarize the overburden portion. The substantially locally planarized overburden portion is mapped to determine a global non-uniformity. The substantially locally planarized overburden portion is etched to substantially remove the global non-uniformity.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: September 6, 2005
    Assignee: Lam Research Corporation
    Inventors: Shrikant P. Lohokare, Andrew D. Bailey, III, David Hemker, Joel M. Cook
  • Patent number: 6929531
    Abstract: A system and method of measuring a metallic layer on a substrate within a multi-step substrate process includes modifying a metallic layer on the substrate such as forming a metallic layer or removing at least a portion of the metallic layer. At least one sensor is positioned a predetermined distance from the surface of the substrate. The surface of the substrate is mapped to determine a uniformity of the metallic layer on the surface of the substrate.
    Type: Grant
    Filed: September 19, 2002
    Date of Patent: August 16, 2005
    Assignee: Lam Research Corporation
    Inventors: Yehiel Gotkis, Aleksander Owczarz, David Hemker, Nicolas Bright, Rodney Kistler
  • Patent number: 6922053
    Abstract: A method for detecting a thickness of a layer of a wafer to be processed is provided. The method includes defining a plurality of sensors configured to create a set of complementary sensors proximate the wafer. Further included in the method is distributing the plurality of sensors along a particular radius of the wafer such that each sensor of the plurality of sensors is out of phase with an adjacent sensor by a same angle. The method also includes measuring signals generated by the plurality of sensors. Further included is averaging the signals generated by the plurality of sensors so as to generate a combination signal. The averaging is configured to remove noise from the combination signal such that the combination signal is capable of being correlated to identify the thickness of the layer.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: July 26, 2005
    Assignee: Lam Research Corporation
    Inventors: Yehiel Gotkis, Rodney Kistler, Aleksander Owczarz, David Hemker, Nicolas J. Bright
  • Publication number: 20050125202
    Abstract: A method for converting a slope based detection task to a threshold based detection task is provided. The method initiates with defining an approximation equation for a set of points corresponding to values of a process being monitored. Then, an expected value at a current point of the process being monitored is predicted. Next, a difference between a measured value at the current point of the process being monitored and the corresponding expected value is calculated. Then, the difference is monitored for successive points to detect a deviation value between the measured value and the expected value. Next, a transition point for the process being monitored is identified based on the detection of the deviation value. A processing system configured to provide real time data for a slope based transition and a computer readable media are also provided.
    Type: Application
    Filed: January 5, 2005
    Publication date: June 9, 2005
    Inventors: Yehiel Gotkis, Vladimir Katz, David Hemker, Rodney Kistler, Nicolas Bright
  • Patent number: 6894491
    Abstract: A method for detecting a thickness of a layer of a wafer is provided. The method includes defining a particular radius of a wafer carrier configured to engage the wafer to be processed. The method also includes providing a plurality of sensors configured to create a set of complementary sensors. Further included in the method is distributing the plurality of sensors along the particular radius within the wafer carrier such that each sensor of the plurality of sensors is out of phase with an adjacent sensor by a same angle. The method also includes measuring signals generated by the plurality of sensors. Further included is averaging the signals generated by the plurality of sensors so as to generate a combination signal. The averaging is configured to remove noise from the combination signal such that the combination signal is capable of being correlated to identify the thickness of the layer.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: May 17, 2005
    Assignee: Lam Research Corporation
    Inventors: Yehiel Gotkis, Rodney Kistler, Aleksander Owczarz, David Hemker, Nicolas J. Bright
  • Publication number: 20050072528
    Abstract: A system for processing a wafer is provided. The system includes a chemical mechanical planarization (CMP) tool. The CMP tool includes a wafer carrier defined within a housing. A carrier film is affixed to the bottom surface and supports a wafer. A sensor embedded in the wafer carrier. The sensor is configured to induce an eddy current in the wafer to determine a proximity and a thickness of the wafer. A cluster of sensors external to the CMP tool is included. The cluster of sensors is in communication with the sensor embedded in the wafer carrier and substantially eliminates a distance sensitivity. The cluster of sensors provides an initial thickness of the wafer to allow for a calibration to be performed on the sensor embedded in the wafer carrier. The calibration offsets variables causing inaccuracies in the determination of the thickness of the wafer during CMP operation. A method and an apparatus are also provided.
    Type: Application
    Filed: June 28, 2002
    Publication date: April 7, 2005
    Inventors: Aleksander Owczarz, Yehiel Gotkis, David Hemker, Rodney Kistler
  • Publication number: 20050066739
    Abstract: A chemical mechanical planarization (CMP) system is provided. The CMP system includes a wafer carrier configured to support a wafer during a planarization process, the wafer carrier including a sensor configured to detect a signal indicating a stress being experienced by the wafer during planarization. A computing device in communication with the sensor is included. The computing device is configured to translate the signal to generate a stress map for analysis. A stress relief device responsive to a signal received from the computing device is included. The stress relief device is configured to relieve the stress being experienced by the wafer.
    Type: Application
    Filed: September 26, 2003
    Publication date: March 31, 2005
    Inventors: Yehiel Gotkis, Rodney Kistler, Aleksander Owczarz, David Hemker, Nicolas Bright
  • Publication number: 20050054268
    Abstract: In chemical mechanical polishing, a wafer carrier plate is provided with a cavity for reception of a sensor positioned very close to a wafer to be polished. Energy resulting from contact between a polishing pad and an exposed surface of the wafer is transmitted only a very short distance to the sensor and is sensed by the sensor, providing data as to the nature of properties of the exposed surface of the wafer, and of transitions of those properties. Correlation methods provide graphs relating sensed energy to the surface properties, and to the transitions. The correlation graphs provide process status data for process control.
    Type: Application
    Filed: October 14, 2004
    Publication date: March 10, 2005
    Inventors: Rodney Kistler, David Hemker, Yehiel Gotkis, Aleksander Owczarz, Bruno Morel, Damon Williams
  • Patent number: 6859765
    Abstract: A method for converting a slope based detection task to a threshold based detection task is provided. The method initiates with defining an approximation equation for a set of points corresponding to values of a process being monitored. Then, an expected value at a current point of the process being monitored is predicted. Next, a difference between a measured value at the current point of the process being monitored and the corresponding expected value is calculated. Then, the difference is monitored for successive points to detect a deviation value between the measured value and the expected value. Next, a transition point for the process being monitored is identified based on the detection of the deviation value. A processing system configured to provide real time data for a slope based transition and a computer readable media are also provided.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: February 22, 2005
    Assignee: Lam Research Corporation
    Inventors: Yehiel Gotkis, Vladimir Katz, David Hemker, Rodney Kistler, Nicolas J. Bright
  • Publication number: 20050007107
    Abstract: A method for detecting a thickness of a layer of a wafer to be processed is provided. The method includes defining a plurality of sensors configured to create a set of complementary sensors proximate the wafer. Further included in the method is distributing the plurality of sensors along a particular radius of the wafer such that each sensor of the plurality of sensors is out of phase with an adjacent sensor by a same angle. The method also includes measuring signals generated by the plurality of sensors. Further included is averaging the signals generated by the plurality of sensors so as to generate a combination signal. The averaging is configured to remove noise from the combination signal such that the combination signal is capable of being correlated to identify the thickness of the layer.
    Type: Application
    Filed: August 5, 2004
    Publication date: January 13, 2005
    Applicant: LAM RESEARCH CORP.
    Inventors: Yehiel Gotkis, Rodney Kistler, Aleksander Owczarz, David Hemker, Nicolas Bright
  • Publication number: 20050000653
    Abstract: A system for processing a wafer is provided. The system includes a chemical mechanical planarization (CMP) tool. The CMP tool includes a wafer carrier defined within a housing. A carrier film is affixed to the bottom surface and supports a wafer. A sensor embedded in the wafer carrier. The sensor is configured to induce an eddy current in the wafer to determine a proximity and a thickness of the wafer. A sensor array external to the CMP tool is included. The sensor array is in communication with the sensor embedded in the wafer carrier and substantially eliminates a distance sensitivity. The sensor array provides an initial thickness of the wafer to allow for a calibration to be performed on the sensor embedded in the wafer carrier. The calibration offsets variables causing inaccuracies in the determination of the thickness of the wafer during CMP operation. A method and an apparatus are also provided.
    Type: Application
    Filed: June 29, 2004
    Publication date: January 6, 2005
    Inventors: Yehiel Gotkis, Rodney Kistler, Aleksander Owczarz, David Hemker, Nicolas Bright
  • Publication number: 20040248408
    Abstract: A system and method for planarizing a patterned semiconductor substrate includes receiving a patterned semiconductor substrate. The patterned semiconductor substrate having a conductive interconnect material filling multiple of features in the pattern. The conductive interconnect material having an overburden portion. The overburden portion having a localized non-uniformity. A bulk portion of the overburden portion is removed to planarize the overburden portion. The substantially locally planarized overburden portion is mapped to determine a global non-uniformity. The substantially locally planarized overburden portion is etched to substantially remove the global non-uniformity.
    Type: Application
    Filed: March 14, 2003
    Publication date: December 9, 2004
    Applicant: LAM RESEARCH CORPORATION
    Inventors: Shrikant P. Lohokare, Andrew D. Bailey, David Hemker, Joel M. Cook
  • Patent number: 6821899
    Abstract: A system and method for planarizing a patterned semiconductor substrate includes receiving a patterned semiconductor substrate. The patterned semiconductor substrate having a conductive interconnect material filling multiple of features in the pattern. The conductive interconnect material having an overburden portion. The overburden portion includes a localized non-uniformity. An additional layer is formed on the overburden portion. The additional layer and the overburden portion are planarized. The planarizing process substantially entirely removes the additional layer.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: November 23, 2004
    Assignee: Lam Research Corporation
    Inventors: Shrikant P. Lohokare, Andrew D. Bailey, III, David Hemker, Joel M. Cook
  • Patent number: 6808590
    Abstract: A system for processing a wafer is provided. The system includes a chemical mechanical planarization (CMP) tool. The CMP tool includes a wafer carrier defined within a housing. A carrier film is affixed to the bottom surface and supports a wafer. A sensor embedded in the wafer carrier. The sensor is configured to induce an eddy current in the wafer to determine a proximity and a thickness of the wafer. A sensor array external to the CMP tool is included. The sensor array is in communication with the sensor embedded in the wafer carrier and substantially eliminates a distance sensitivity. The sensor array provides an initial thickness of the wafer to allow for a calibration to be performed on the sensor embedded in the wafer carrier. The calibration offsets variables causing inaccuracies in the determination of the thickness of the wafer during CMP operation. A method and an apparatus are also provided.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: October 26, 2004
    Assignee: Lam Research Corporation
    Inventors: Yehiel Gotkis, Rodney Kistler, Aleksander Owczarz, David Hemker, Nicolas J. Bright
  • Publication number: 20040180545
    Abstract: A system and method for planarizing a patterned semiconductor substrate includes receiving a patterned semiconductor substrate. The patterned semiconductor substrate having a conductive interconnect material filling multiple of features in the pattern. The conductive interconnect material having an overburden portion. The overburden portion includes a localized non-uniformity. An additional layer is formed on the overburden portion. The additional layer and the overburden portion are planarized. The planarizing process substantially entirely removes the additional layer.
    Type: Application
    Filed: March 14, 2003
    Publication date: September 16, 2004
    Applicant: LAM RESEARCH CORPORATION
    Inventors: Shrikant P. Lohokare, Andrew D. Bailey, David Hemker, Joel M. Cook
  • Publication number: 20040154747
    Abstract: A vacuum plasma processor includes a roof structure including a dielectric window carrying (1) a semiconductor plate having a high electric conductivity so it functions as an electrode, (2) a hollow coil and (3) at least one electric shield. The shield, coil and semiconductor plate are positioned to prevent substantial coil generated electric field components from being incident on the semiconductor plate. During a first interval the coil produces an RF electromagnetic field that results in a plasma that strips photoresist from a semiconductor wafer. During a second interval the semiconductor plate and another electrode produce an RF electromagnetic field that results in a plasma that etches electric layers, underlayers and photoresist layers from the wafer.
    Type: Application
    Filed: February 3, 2004
    Publication date: August 12, 2004
    Applicant: LAM RESEARCH CORPORATION
    Inventors: Tuqiang Ni, Wenli Collison, David Hemker, Lumin Li
  • Publication number: 20040137741
    Abstract: Methods for reducing contamination of semiconductor substrates after processing are provided. The methods include heating the processed substrate to remove adsorbed chemical species from the substrate surface by thermal desorption. Thermal desorption can be performed either in-situ or ex-situ. The substrate can be heated by convection, conduction, and/or radiant heating. The substrate can also be heated by treating the surface of the processed substrate with an inert plasma during which treatment ions in the plasma bombard the substrate surface raising the temperature thereof. Thermal desorption can also be performed ex-situ by applying thermal energy to the substrate during transport of the substrate from the processing chamber and/or by transporting the substrate to a transport module (e.g., a load lock) or to a second processing chamber for heating. Thermal desorption during transport can be enhanced by purging an inert gas over the substrate surface.
    Type: Application
    Filed: November 18, 2002
    Publication date: July 15, 2004
    Inventors: Robert Chebi, David Hemker
  • Patent number: 6759336
    Abstract: Methods for reducing contamination of semiconductor substrates after processing are provided. The methods include heating the processed substrate to remove absorbed chemical species from the substrate surface by thermal desorption. Thermal desorption can be performed either in-situ or ex-situ. The substrate can be heated by convection, conduction, and/or radiant heating. The substrate can also be heated by treating the surface of the processed substrate with an inert plasma during which treatment ions in the plasma bombard the substrate surface raising the temperature thereof. Thermal desorption can also be performed ex-situ by applying thermal energy to the substrate during transport of the substrate from the processing chamber and/or by transporting the substrate to a transport module (e.g., a load lock) or to a second processing chamber for heating. Thermal desorption during transport can be enhanced by purging an inert gas over the substrate surface.
    Type: Grant
    Filed: November 18, 2002
    Date of Patent: July 6, 2004
    Assignee: Lam Research Corporation
    Inventors: Robert Chebi, David Hemker
  • Publication number: 20040119468
    Abstract: A method for detecting a thickness of a layer of a wafer is provided. The method includes defining a particular radius of a wafer carrier configured to engage the wafer to be processed. The method also includes providing a plurality of sensors configured to create a set of complementary sensors. Further included in the method is distributing the plurality of sensors along the particular radius within the wafer carrier such that each sensor of the plurality of sensors is out of phase with an adjacent sensor by a same angle. The method also includes measuring signals generated by the plurality of sensors. Further included is averaging the signals generated by the plurality of sensors so as to generate a combination signal. The averaging is configured to remove noise from the combination signal such that the combination signal is capable of being correlated to identify the thickness of the layer.
    Type: Application
    Filed: December 23, 2002
    Publication date: June 24, 2004
    Applicant: LAM RESEARCH CORP.
    Inventors: Yehiel Gotkis, Rodney Kistler, Aleksander Owczarz, David Hemker, Nicolas J. Bright
  • Publication number: 20040117054
    Abstract: A method for converting a slope based detection task to a threshold based detection task is provided. The method initiates with defining an approximation equation for a set of points corresponding to values of a process being monitored. Then, an expected value at a current point of the process being monitored is predicted. Next, a difference between a measured value at the current point of the process being monitored and the corresponding expected value is calculated. Then, the difference is monitored for successive points to detect a deviation value between the measured value and the expected value. Next, a transition point for the process being monitored is identified based on the detection of the deviation value. A processing system configured to provide real time data for a slope based transition and a computer readable media are also provided.
    Type: Application
    Filed: December 13, 2002
    Publication date: June 17, 2004
    Applicant: LAM RESEARCH CORPORATION
    Inventors: Yehiel Gotkis, Vladimir Katz, David Hemker, Rodney Kistler, Nicolas J. Bright