Patents by Inventor David J. Lee
David J. Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11798982Abstract: Methods may include providing a device structure including a well formed in an epitaxial layer, and forming a plurality of shielding layers in the device structure, wherein at least one shielding layer is formed between a pair of adjacent sacrificial gates of a plurality of sacrificial gates. The method may further include forming a contact over the at least one shielding layer, forming a fill layer over the contact, and forming a plurality of trenches into the device structure, wherein at least one trench of the plurality of trenches is formed between a pair of adjacent shielding layers of the plurality of shielding layers, and wherein the at least one trench of the plurality of trenches is defined in part by a sidewall of the fill layer. The method may further include forming a gate structure within the at least one trench of the plurality of trenches.Type: GrantFiled: April 23, 2021Date of Patent: October 24, 2023Assignee: Applied Materials, Inc.Inventors: Qintao Zhang, Samphy Hong, Jason Appell, David J. Lee
-
Patent number: 11764350Abstract: Systems and methods for anisotropic expansion of silicon-dominant anodes may include a cathode, an electrolyte, and an anode, where the anode may include a current collector and an active material on the current collector. An expansion of the anode during operation may be configured by a thickness of the current collector. The expansion of the anode may be more anisotropic for thicker current collectors. A thicker current collector may be 10 ?m thick or greater. The expansion of the anode may be more anisotropic for more rigid materials used for the current collector. A more rigid current collector may include nickel and a less rigid current collector may include copper. The expansion of the anode may be more anisotropic for a rougher surface current collector.Type: GrantFiled: April 10, 2020Date of Patent: September 19, 2023Assignee: ENEVATE CORPORATIONInventors: Giulia Canton, Benjamin Park, Fred Bonhomme, David J. Lee, Ian Browne
-
Patent number: 11728468Abstract: Systems and methods for anisotropic expansion of silicon-dominant anodes may include a cathode, an electrolyte, and an anode, where the anode may include a current collector and an active material on the current collector. An expansion of the anode during operation may be configured by a metal used for the current collector, and/or a lamination process that adheres the active material to the current collector. The expansion of the anode may be more anisotropic for thicker current collectors. A thicker current collector may be 10 ?m thick or greater. The expansion of the anode may be more anisotropic for more rigid materials used for the current collector. A more rigid current collector may include nickel and a less rigid current collector may include copper. The expansion of the anode may be more anisotropic for a rougher surface current collector.Type: GrantFiled: April 10, 2020Date of Patent: August 15, 2023Assignee: ENEVATE CORPORATIONInventors: Giulia Canton, Benjamin Park, Fred Bonhomme, David J. Lee, Ian Browne
-
Publication number: 20230238507Abstract: Systems and methods are provided for high volume roll-to-roll direct coating of electrodes for silicon-dominant anode cells. A slurry that includes silicon particles and a binder material may be applied to a current collector film, and the slurry may be processed to form a precursor composite film coated on the current collector film. The current collector film with the coated precursor composite film may be rolled into a precursor composite roll. A heat treatment may be applied to the current collector film with the coated precursor composite film in an environment including nitrogen gas, to convert the coated precursor composite film to a pyrolyzed composite film coated on the current collector film. The heat treatment may include applying the heat treatment to the precursor composite roll in whole and/or applying the heat treatment to the current collector film with the coated precursor composite film as it is continuously fed.Type: ApplicationFiled: February 27, 2023Publication date: July 27, 2023Inventors: Fred Bonhomme, Benjamin Park, Kirk Shockley, Giulia Canton, David J. Lee
-
Patent number: 11695106Abstract: Systems and methods are provided for carbon additives for direct coating of silicon-dominant anodes. An example composition for use in directly coated anodes may include a silicon-dominated anode active material, a carbon-based binder, and a carbon-based additive, with the composition being configured for low-temperature pyrolysis. The low-temperature pyrolysis may be conducted at <600° C. An anode may be formed using a direct coating process of the composition on a current collector. The anode active material yields silicon constituting between 86% and 97% of weight of the formed anode after pyrolysis. The carbon-based additive yields carbon constituting between 2% and 6% of weight of the formed anode after pyrolysis.Type: GrantFiled: April 4, 2022Date of Patent: July 4, 2023Assignee: ENEVATE CORPORATIONInventors: Monika Chhorng, David J. Lee, Rahul Kamath
-
Patent number: 11695104Abstract: Systems and methods for improved performance of silicon anode containing cells through formation may include a cathode, electrolyte, and silicon containing anode. The battery may be subjected to a formation process comprising one or more cycles of: charging the battery at a 1 C rate to 3.8 volts or greater until a current in the battery reaches C/20, and discharging the battery to 2.5 volts or less. The battery may comprise a lithium ion battery. The electrolyte may comprise a liquid, solid, or gel. The anode may comprise greater than 70% silicon. The battery may be discharged until the current reaches 0.2 C. The battery may be discharged at a 1 C rate or at a 0.2 C rate. The battery may be in a rest period between the charge and discharge.Type: GrantFiled: August 23, 2019Date of Patent: July 4, 2023Assignee: ENEVATE CORPORATIONInventors: Uday S. Kasavajjula, Benjamin Park, David J. Lee, SungWon Choi
-
Patent number: 11695060Abstract: Disclosed herein are methods for forming MOSFETs. In some embodiments, a method may include providing a device structure including a plurality of trenches, and forming a mask over the device structure including within each of the plurality of trenches and over a top surface of the device structure. The method may further include removing the mask from within the trenches, wherein the mask remains along the top surface of the device structure, and implanting the device structure to form a treated layer along a bottom of the trenches. In some embodiments, the method may further include forming a gate oxide layer along a sidewall of each of the trenches and along the bottom of the trenches, wherein a thickness of the oxide along the bottom of the trenches is greater than a thickness of the oxide along the sidewall of each of the trenches.Type: GrantFiled: December 18, 2020Date of Patent: July 4, 2023Assignee: Applied Materials, Inc.Inventors: Qintao Zhang, Samphy Hong, Wei Zou, Lei Zhong, David J. Lee, Felix Levitov
-
Publication number: 20230187604Abstract: Systems and methods are provided for carbon additives for direct coating of silicon-dominant anodes. An example composition for use in directly coated anodes may include a silicon-dominated anode active material, a carbon-based binder, and a carbon-based additive, with the composition being configured for low-temperature pyrolysis. The low-temperature pyrolysis may be conducted at <600° C. An anode may be formed using a direct coating process of the composition on a current collector. The anode active material yields silicon constituting between 86% and 97% of weight of the formed anode after pyrolysis. The carbon-based additive yields carbon constituting between 2% and 6% of weight of the formed anode after pyrolysis.Type: ApplicationFiled: September 15, 2022Publication date: June 15, 2023Inventors: MONIKA CHHORNG, DAVID J. LEE, RAHUL KAMATH
-
Patent number: 11594714Abstract: Systems and methods are provided for high volume roll-to-roll direct coating of electrodes for silicon-dominant anode cells and may include applying a slurry to a current collector film, the slurry comprising silicon particles and a binder material; drying the slurry to form a precursor composite film; rolling the current collector film into a precursor composite roll; and applying a heat treatment to the precursor composite film and the current collector film in a nitrogen gas environment, wherein the heat treatment is configured for converting the precursor composite film to a pyrolyzed composite film. The heat treatment may include one or both of: applying the heat treatment to a roll comprising the precursor composite roll in whole; and applying the heat treatment to the current collector film as it is continuously fed from the precursor composite roll.Type: GrantFiled: May 14, 2021Date of Patent: February 28, 2023Assignee: ENEVATE CORPORATIONInventors: Fred Bonhomme, Benjamin Park, Kirk Shockley, Giulia Canton, David J. Lee
-
Publication number: 20230006198Abstract: Systems and methods for configuring anisotropic expansion of silicon-dominant anodes using particle size may include a cathode, an electrolyte, and an anode, where the anode may include a current collector and an active material on the current collector. An expansion of the anode during operation may be configured by utilizing a predetermined particle size distribution of silicon particles in the active material. The expansion of the anode may be greater for smaller particle size distributions, which may range from 1 to 10 ?m. The expansion of the anode may be smaller for a rougher surface active material, which may be configured by utilizing larger particle size distributions that may range from 5 to 25 ?m. The expansion may be configured to be more anisotropic using more rigid materials for the current collector, where a more rigid current collector may comprise nickel and a less rigid current collector may comprise copper.Type: ApplicationFiled: September 13, 2022Publication date: January 5, 2023Inventors: Ian Browne, Benjamin Park, Jill Renee Pestana, Fred Bonhomme, Monika Chhorng, David J. Lee, Heidi Anderson
-
Publication number: 20220415656Abstract: Disclosed herein are methods for backside wafer dopant activation using a low-temperature ion implant. In some embodiments, a method may include forming a semiconductor device atop a first main side of a substrate, and performing a low-temperature ion implant to a second main side of the substrate, wherein the first main side of the substrate is opposite the second main side of the substrate. The method may further include performing a second ion implant to the second main side of the substrate to form a collector layer.Type: ApplicationFiled: June 25, 2021Publication date: December 29, 2022Applicant: Applied Materials, Inc.Inventors: Qintao Zhang, Samphy Hong, Vittoriano Ruscio, Wei Zou, David J. Lee
-
Patent number: 11527412Abstract: A method for performing an ion implantation process including providing a hardmask layer disposed atop a substrate, providing a photoresist layer disposed atop the hardmask layer and defining a pattern exposing a portion of the hardmask layer, performing a room temperature ion implantation process wherein an ion beam formed of an ionized first dopant species is directed onto the exposed portion of the hardmask layer to make the exposed portion more susceptible to ion etching or wet etching, performing an etching process wherein the exposed portion of the hardmask layer is etched away to expose an underlying portion of the substrate, and performing a high energy, hot ion implantation process wherein an ion beam formed of a ionized second dopant species is directed onto the exposed portion of the substrate.Type: GrantFiled: December 6, 2020Date of Patent: December 13, 2022Assignee: Applied Materials, Inc.Inventors: Qintao Zhang, Samphy Hong, David J. Lee, Felix Levitov, Lei Zhong, Wei Zou
-
Publication number: 20220344453Abstract: Methods may include providing a device structure including a well formed in an epitaxial layer, and forming a plurality of shielding layers in the device structure, wherein at least one shielding layer is formed between a pair of adjacent sacrificial gates of a plurality of sacrificial gates. The method may further include forming a contact over the at least one shielding layer, forming a fill layer over the contact, and forming a plurality of trenches into the device structure, wherein at least one trench of the plurality of trenches is formed between a pair of adjacent shielding layers of the plurality of shielding layers, and wherein the at least one trench of the plurality of trenches is defined in part by a sidewall of the fill layer. The method may further include forming a gate structure within the at least one trench of the plurality of trenches.Type: ApplicationFiled: April 23, 2021Publication date: October 27, 2022Applicant: Applied Materials, Inc.Inventors: Qintao Zhang, Samphy Hong, Jason Appell, David J. Lee
-
Publication number: 20220302430Abstract: Systems and methods are provided for high volume roll-to-roll transfer lamination of electrodes for silicon-dominant anode cells.Type: ApplicationFiled: June 9, 2022Publication date: September 22, 2022Inventors: Fred Bonhomme, Benjamin Park, Kirk Shockley, Giulia Canton, David J. Lee
-
Patent number: 11450850Abstract: Systems and methods for configuring anisotropic expansion of silicon-dominant anodes using particle size may include a cathode, an electrolyte, and an anode, where the anode may include a current collector and an active material on the current collector. An expansion of the anode during operation may be configured by utilizing a predetermined particle size distribution of silicon particles in the active material. The expansion of the anode may be greater for smaller particle size distributions, which may range from 1 to 10 ?m. The expansion of the anode may be smaller for a rougher surface active material, which may be configured by utilizing larger particle size distributions that may range from 5 to 25 ?m. The expansion may be configured to be more anisotropic using more rigid materials for the current collector, where a more rigid current collector may comprise nickel and a less rigid current collector may comprise copper.Type: GrantFiled: November 12, 2019Date of Patent: September 20, 2022Assignee: Enevate CorporationInventors: Ian Browne, Benjamin Park, Jill Renee Pestana, Fred Bonhomme, Monika Chhorng, David J. Lee, Heidi Anderson
-
Patent number: 11450841Abstract: Systems and methods are provided for carbon additives for direct coating of silicon-dominant anodes. An example composition for use in directly coated anodes may include a silicon-dominated anode active material, a carbon-based binder, and a carbon-based additive, with the composition being configured for low-temperature pyrolysis. The low-temperature pyrolysis may be conducted at <600° C. An anode may be formed using a direct coating process of the composition on a current collector. The anode active material yields silicon constituting between 86% and 97% of weight of the formed anode after pyrolysis. The carbon-based additive yields carbon constituting between 2% and 6% of weight of the formed anode after pyrolysis.Type: GrantFiled: November 12, 2019Date of Patent: September 20, 2022Assignee: ENEVATE CORPORATIONInventors: Monika Chhorng, David J. Lee, Rahul Kamath
-
Patent number: 11437488Abstract: Disclosed herein are methods for forming split-gate MOSFETs including a gate shield. In some embodiments, a method may include providing a device structure including a well formed in an epitaxial layer, forming a set of trenches through the well and the epitaxial layer, implanting the device structure to form a gate shield layer at a bottom of each of the set of trenches, and forming a gate spacer layer over the device structure including within the set of trenches.Type: GrantFiled: November 24, 2020Date of Patent: September 6, 2022Assignee: Applied Materials, Inc.Inventors: Qintao Zhang, Samphy Hong, David J. Lee, Jason Appell
-
Publication number: 20220278316Abstract: The present application describes a method of forming an energy storage device that directly adds a lithium layer (such as a lithium foil or otherwise deposited lithium) into the cell stack during cell assembly for prelithiating. The method includes providing a silicon-based anode, providing a cathode, positioning a separator between the anode and the cathode, and disposing a lithium layer between the silicon-based anode and the separator, such that the lithium layer is in contact with the anode.Type: ApplicationFiled: May 17, 2022Publication date: September 1, 2022Inventors: Shiang Jen Teng, Xiaohua Liu, David J. Lee, Tracy Ho, Mai Vietnam, Benjamin Yong Park, Frederic Bonhomme
-
Publication number: 20220263059Abstract: Systems and methods are provided for heat treatment of whole cell structures. A battery may be formed based on applying of heat treatment to a whole cell composition that includes, at least, both anode material and cathode material, such that the anode material and the cathode material are heat treated at the same time. The heat treatment may include pyrolysis. The whole cell composition, and the corresponding cell formed based thereon, may include solid state electrolyte.Type: ApplicationFiled: May 5, 2022Publication date: August 18, 2022Inventors: Qian Huang, Benjamin Park, Ian Browne, Rahul Kamath, David J. Lee
-
Publication number: 20220231271Abstract: Systems and methods are provided for carbon additives for direct coating of silicon-dominant anodes. An example composition for use in directly coated anodes may include a silicon-dominated anode active material, a carbon-based binder, and a carbon-based additive, with the composition being configured for low-temperature pyrolysis. The low-temperature pyrolysis may be conducted at <600° C. An anode may be formed using a direct coating process of the composition on a current collector. The anode active material yields silicon constituting between 86% and 97% of weight of the formed anode after pyrolysis. The carbon-based additive yields carbon constituting between 2% and 6% of weight of the formed anode after pyrolysis.Type: ApplicationFiled: April 4, 2022Publication date: July 21, 2022Inventors: MONIKA CHHORNG, DAVID J. LEE, RAHUL KAMATH