Patents by Inventor David L. Thompson

David L. Thompson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6804552
    Abstract: An improved switching system for use with an implantable medical device (IMD) is described. The system utilizes Micro-Electrical-Mechanical system (MEMs) switches in place of one or more switches formerly implemented using transistor networks. Any type of switching circuit used within an IMD may be implemented using this technology. For example, MEMs switches may be utilized in a circuit for selectably delivering electrical stimulation to a patient, and/or in a circuit for providing surge protection. The fabrication of the MEMs switches may be performed using one or more separate tubs or wells on a silicon substrate to isolate switching circuitry from other IMD circuitry.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: October 12, 2004
    Assignee: Medtronic, Inc.
    Inventors: David L. Thompson, Daniel R. Greeninger
  • Publication number: 20040199221
    Abstract: A patient monitoring system in cooperation with IMDs provides information, direction and counseling to patients. Specifically, a combination of lifestyle parameters, such as, for example, diet, exercise, weight, medication and environmental factors such as, for example, temperature, UV factor, pollen count, humidity, air pollution index, are integrated to provide a seamless, comprehensive, chronic monitoring system and support for patients. The system includes a home monitor, IMD, and a remote expert station in operable data communications therebetween. Personal data such as weight, environmental data, food data from refrigerators and pantry, type of exercise equipment, medication, physiologically significant events, physician treatment plan and the like are integrated with IMD data to provide continuous patient care, counseling, consultation and notification.
    Type: Application
    Filed: April 15, 2004
    Publication date: October 7, 2004
    Applicant: Medtronic, Inc.
    Inventors: Willa Fabian, David Moore, Hal Kaufman, David L. Thompson
  • Publication number: 20040176822
    Abstract: An automated identification and configuration system for use with an implantable medical device (IMD) is disclosed. The system includes a first communication circuit that is attached to, or otherwise carried by, a detachable component associated with the IMD such as a medical lead. The communication circuit stores data such as model numbers, serial numbers, technical data, and/or calibration information that describes the additional component. This information may be transferred by the first communications circuit to a second communications circuit that is external to the additional component. This transferred data can be used to automatically configure the internal circuitry and connection functions of the IMD to properly interface with, and support, the additional component. For example, the data can be used to automatically adjust amplifier gains or other sensor circuitry, or to configure a connector block to properly couple to the component.
    Type: Application
    Filed: November 14, 2003
    Publication date: September 9, 2004
    Applicant: Medtronic, Inc.
    Inventors: David L. Thompson, Steven D. Goedeke, Gregory J. Haubrich, Ryan Cobian, Eric Bonde, John L. Sommer, Jonathan Werder, Nels Nerison, Eric V. Blaha
  • Publication number: 20040167587
    Abstract: The invention is directed to a programmer for communication with different medical devices that utilize different telemetry communication techniques. The programmer receives telemetry signals from a given medical device, and selects an appropriate communication mode, which can be pre-programmed into the programmer as one of a plurality of possible communication modes. The programmer can configure itself for communication with a given medical device based on the telemetry signal it receives. Specifically the programmer is implemented as a software based, power efficient receiver/transmitter based upon an inexpensive, simple motor-controller DSP.
    Type: Application
    Filed: November 26, 2003
    Publication date: August 26, 2004
    Applicant: Medtronic, Inc.
    Inventor: David L. Thompson
  • Publication number: 20040158294
    Abstract: The invention is directed to elements implantable in a human body, such as sensors, that receive power from an implantable motion-powered energy source. The motion-powered energy source generates electrical energy by converting mechanical energy in the form of motion into electrical energy. The electrical energy, which may be stored in a storage element, powers the element. The motion-powered energy source may include a microelectromechanical systems (MEMS) accelerometer that generates electrical energy in response to motion. In one embodiment of the invention, a motion-powered energy source disposed proximate to a heart may convert some of the mechanical energy of the heart to electrical energy, which powers the element.
    Type: Application
    Filed: February 12, 2003
    Publication date: August 12, 2004
    Applicant: Medtronic, Inc.
    Inventor: David L. Thompson
  • Publication number: 20040147872
    Abstract: A device to determine the level of a substance of interest in a patient's body and provide a therapeutic amount of medicament is disclosed. The level of a substance of interest in the patient's body is determined by iontopheretically sampling the patient's blood and then analyzing the resulting sample to determine the level of the substance of interest. The information about the level of a substance of interest is transmitted to an implanted drug pump in the patient's body. In the preferred embodiment, the substance of interest sensor is an external sensor applied to the user's skin.: In an alternate embodiment, the sensor may be implanted. The preferred method of transmitting information about the level of a substance of interest determined by the sensor is transmitted to an implanted drug pump in the patient's body is via a so called “body bus”.
    Type: Application
    Filed: December 29, 2003
    Publication date: July 29, 2004
    Applicant: Medtronic, Inc.
    Inventor: David L. Thompson
  • Patent number: 6749581
    Abstract: A medical device known as a catheter is configured with a variable infusion rate to deliver a therapeutic substance such as pharmaceutical compositions, genetic materials, and biologics to treat a variety of medical conditions such as pain, spastisity, cancer, and other diseases in humans and other animals. The variable infusion rate catheter provides clinician with increased flexibility, versatility, and many other improvements. The variable infusion rate catheter has a Micro Electro Mechanical System (MEMS) flow restriction with a variable infusion rate. The MEMS flow restriction is fluidly coupled to the catheter to receive therapeutic substance dispensed from a therapeutic substance delivery device and restrict the therapeutic substance flow to a desired infusion rate. Many embodiments of the variable infusion rate catheter and its methods of operation are possible.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: June 15, 2004
    Assignee: Medtronic, Inc.
    Inventors: David L. Thompson, Michael F. Mattes, Lary R. Larson, Kenneth T. Heruth
  • Patent number: 6735479
    Abstract: A patient monitoring system in cooperation with IMDs provides information, direction and counseling to patients. Specifically, a combination of lifestyle parameters, such as, for example, diet, exercise, weight, medication and environmental factors such as, for example, temperature, UV factor, pollen count, humidity, air pollution index, are integrated to provide a seamless, comprehensive, chronic monitoring system and support for patients. The system includes a home monitor, IMD, and a remote expert station in operable data communications therebetween. Personal data such as weight, environmental data, food data from refrigerators and pantry, type of exercise equipment, medication, physiologically significant events, physician treatment plan and the like are integrated with IMD data to provide continuous patient care, counseling, consultation and notification.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: May 11, 2004
    Assignee: Medtronic, Inc.
    Inventors: Willa Fabian, David Moore, Hal Kaufman, David L. Thompson
  • Patent number: 6728576
    Abstract: A non-tissue contacting electrode system senses physiologic signals from a patient during implant and/or followup of an implantable medical device (IMD) via an external programmer or other monitoring instrument. These sensing systems are electrically connected to the circuitry of the external device and detect cardiac depolarization waveforms displayable as electrocardiographic tracings on the instrument screen when the programming head is positioned above an implanted pacemaker (or other implanted device) so equipped with a non-tissue contacting electrode system. The structure and system provide an enhanced capability for detecting and gathering physiological signals from a patient with minimally invasive patient contact.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: April 27, 2004
    Assignee: Medtronic, Inc.
    Inventors: David L. Thompson, Suzanne L. Wilson
  • Publication number: 20040078067
    Abstract: An automated identification and configuration system for use with an implantable medical device (IMD) is disclosed. The system includes a first communication circuit that is attached to, or otherwise carried by, a detachable component associated with the IMD such as a medical lead. The communication circuit stores data such as model numbers, serial numbers, technical data, and/or calibration information that describes the additional component. This information may be transferred by the first communications circuit to a second communications circuit that is external to the additional component. This transferred data can be used to automatically configure the internal circuitry and connection functions of the IMD to properly interface with, and support, the additional component. For example, the data can be used to automatically adjust amplifier gains or other sensor circuitry, or to configure a connector block to properly couple to the component.
    Type: Application
    Filed: November 14, 2003
    Publication date: April 22, 2004
    Applicant: Medtronic, Inc.
    Inventors: David L. Thompson, Steven D. Goedeke, Gregory J. Haubrich, Ryan Cobian, Eric Bonde, John L. Sommer, Jonathan Werder, Nels Nerison, Eric V. Blaha
  • Publication number: 20040064166
    Abstract: The invention is directed to a programmer for communication with different medical devices that utilize different telemetry communication techniques. The programmer receives telemetry signals from a given medical device, and selects an appropriate communication mode, which can be pre-programmed into the programmer as one of a plurality of possible communication modes. The programmer can configure itself for communication with a given medical device based on the telemetry signal it receives.
    Type: Application
    Filed: September 30, 2002
    Publication date: April 1, 2004
    Inventors: David L. Thompson, Daniel R. Greeninger, Koen J. Weijand
  • Publication number: 20040064165
    Abstract: An implantable medical device is provided which provides for more flexibility in re-programming of the control software, or program, which is controlling the functionality of an implanted pacemaker. The system comprises an external programmer device, which is capable both of programming the implanted device in a conventional way, and also downloading new control software to the implanted device. The downloaded software is programmed into a PLD integrated into the microprocessor, I/O, memory, and a clock control system via a standard data bus. The PLD may be configured to modify the function of the microprocessor, system I/O, random logic, and/or firmware function. The system enables increased processing capabilities, speed, flexibility, and attenuation of battery current drain.
    Type: Application
    Filed: September 30, 2002
    Publication date: April 1, 2004
    Inventor: David L. Thompson
  • Patent number: 6711437
    Abstract: Cardiac pacing systems are disclosed for providing multi-site pacing in a single heart chamber or multi-chamber pacing in two or more heart chambers employing N pacing channels and miniaturized electrical isolation circuitry in up to N−1 pacing channels to minimize the effects of leakage currents generated during delivery of a pacing pulse in any one pacing channel from affecting sense amplifiers in the other pacing channels. Isolation of a the pace/sense electrodes from leakage currents is effected employing monolithic isolation circuit means. An isolated current replicator employing giant magnetoresistive (GMR) sense elements in conjunction with isolated planar cells fabricated in monolithic form is incorporated into conventional VLSI circuitry. Or, the monolithic isolation circuit means is formed of a micro-mechanical fabricated (MEMS) isolation transformer comprising low-loss input and output coils separated by an insulation layer that isolates the input coil from the output coil.
    Type: Grant
    Filed: July 30, 2001
    Date of Patent: March 23, 2004
    Assignee: Medtronic, Inc.
    Inventor: David L. Thompson
  • Patent number: 6707065
    Abstract: In one embodiment, a testing regimen is implemented to reduce test time. Specifically, a structure and method to power up and stabilize all die on the wafer prior to testing each die is implemented. More specifically, parallel powering schemes including die stabilization procedures are used to ready the wafer for testing. A wafer probe tester is indexed from one die to the next for an uninterrupted testing of all die in the wafer subsequent to all die power up and stabilization.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: March 16, 2004
    Assignee: Medtronic, Inc.
    Inventors: Andreas A. Fenner, David L. Thompson
  • Patent number: 6690959
    Abstract: Epidermally mountable device includes terminus structures to enable positive connection with conductive tissue. The device includes nano spikes shaped to penetrate the epidermis of the skin to collect electrical biopotentials such as cardiac depolarization waveforms (ECGs) and various signals transmitted by implanted devices. Generally, the nano spikes are integrated on a substrate comprising, preferably, a flexible metalized conductive plate attachable to an adhesive backing. The device could be mounted on any external body of the patient to collect ECG, EEG or other signals. Further, the device is adaptable to include a programmable microprocessor, including memory and an antenna to store, receive and transmit data as needed. In one embodiment, in addition to collecting physiologic data through direct contact, the device may also be used as a smart patch to download, store and transfer data from implanted medical devices or other data sources using wireless data transmission medium.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: February 10, 2004
    Assignee: Medtronic, Inc.
    Inventor: David L. Thompson
  • Publication number: 20040015199
    Abstract: Implantable medical devices (IMDs) having RF telemetry capabilities for uplink transmitting patient data and downlink receiving programming commands to and from an external programmer having an improved RF module configured to occupy small spaces within the IMD housing to further effect the miniaturization thereof An RF module formed of an RF module substrate and at least one IC chip and discrete components has a volume and dimensions that are optimally minimized to reduce its volumetric form factor. Miniaturization techniques include: (1) integrating inductors into one or more IC chips mounted to the RF module substrate; (2) mounting each IC chip into a well of the RF module substrate and using short bonding wires to electrically connect bond pads of the RF module substrate and the IC chip; and (3) surface mounting discrete capacitors over IC chips to reduce space taken up on the RF module substrate.
    Type: Application
    Filed: March 31, 2003
    Publication date: January 22, 2004
    Applicant: Medtronic, Inc.
    Inventors: David L. Thompson, Gregory J. Haubrich
  • Patent number: 6675049
    Abstract: An automated identification and configuration system for use with an implantable medical device (IMD) is disclosed. The system includes a first communication circuit that is attached to, or otherwise carried by, a detachable component associated with the IMD such as a medical lead. The communication circuit stores data such as model numbers, serial numbers, technical data, and/or calibration information that describes the additional component. This information may be transferred by the first communications circuit to a second communications circuit that is external to the additional component. This transferred data can be used to automatically configure the internal circuitry and connection functions of the IMD to properly interface with, and support, the additional component. For example, the data can be used to automatically adjust amplifier gains or other sensor circuitry, or to configure a connector block to properly couple to the component.
    Type: Grant
    Filed: July 17, 2001
    Date of Patent: January 6, 2004
    Assignee: Medtronic, Inc.
    Inventors: David L. Thompson, Steven D. Goedeke, Gregory J. Haubrich, Ryan Cobian, Eric Bonde, John L. Sommer, Jonathan Werder, Nels Nerison, Eric V. Blaha
  • Patent number: 6669663
    Abstract: A device to determine the level of a substance of interest in a patient's body and provide a therapeutic amount of medicament is disclosed. The level of a substance of interest in the patient's body is determined by iontopheretically sampling the patient's blood and then analyzing the resulting sample to determine the level of the substance of interest. The information about the level of a substance of interest is transmitted to an implanted drug pump in the patient's body. In the preferred embodiment, the substance of interest sensor is an external sensor applied to the user's skin. In an alternate embodiment, the sensor may be implanted. The preferred method of transmitting information about the level of a substance of interest determined by the sensor is transmitted to an implanted drug pump in the patient's body is via a so called “body bus”.
    Type: Grant
    Filed: April 30, 1999
    Date of Patent: December 30, 2003
    Assignee: Medtronic, Inc.
    Inventor: David L. Thompson
  • Patent number: 6650944
    Abstract: A method and a system for retrieving information from an IMD so that a physician may better use the time allotted to a patient. In an example embodiment, a method for communicating between an implanted device and a medical data processing system occurs via a communications module coupled to an antenna member and to the medical data processing system. The communication module and the antenna are arranged to transmit and receive radio frequency signals within a given range or space such as in a room. The method includes broadcasting interrogation requests in the range via the communications module and antenna arrangement and establishing a communications link between the implanted device present in the range and the communications module. A set of patient diagnostic data is then transmitted from the implanted device to the communications module in response to an encoded radio frequency signal from the communications module.
    Type: Grant
    Filed: December 8, 2000
    Date of Patent: November 18, 2003
    Assignee: Medtronic, Inc.
    Inventors: Steven D. Goedeke, David L. Thompson
  • Patent number: 6648823
    Abstract: A method and structure for notifying clinicians with patients with implantable medical devices (IMDs), about recalls and upgrades, therapy improvements, longevity estimates/improvements, and follow-up frequency recommendations is implemented in an interactive preferably wireless communications system involving a preferably web-enabled remote expert station. Either the clinician or the patient may initiate and access the remote expert station. During such communications, the patient's IMDs are evaluated against a first database comprising patient data and a second database comprising statistical, survivability, probability projections. The patient or the clinician may also access a database containing patient-specific information including other device information. If one or more of the patient's IMDs matches with a recalled or an up-gradable unit such message is posted to the clinician and the patient.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: November 18, 2003
    Assignee: Medtronic, Inc.
    Inventor: David L. Thompson