Patents by Inventor David Rosen

David Rosen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240377162
    Abstract: A viewing optic has a texture on at least a portion of the front side of the viewing optic. The texture may be further provided on a portion of at least one of the rear side, left side, right side and/or top side of the viewing optic. The texture on the front side may be the same or different than the texture provided on any other surface. The viewing optic is designed to secure to the slide of a firearm, such as a pistol.
    Type: Application
    Filed: July 22, 2024
    Publication date: November 14, 2024
    Inventors: Michael Rosen, Rob Morell, David Hamilton
  • Patent number: 12103201
    Abstract: A hand-held electrically powered cut-off tool (100) for cutting concrete and stone by a rotatable cutting disc (105), the cut-off tool (100) comprising an electric motor (130) arranged to be controlled by a control unit (110) via a motor control interface (120), wherein the control unit (110) is arranged to obtain data indicative of an angular velocity of the cutting disc (105), and to detect a kickback condition based on a decrease in angular velocity, and wherein the control unit (110) is arranged to electromagnetically brake the electric motor (130) in response to detecting a kickback condition.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: October 1, 2024
    Assignee: HUSQVARNA AB
    Inventors: Magnus Rosén, Victor Johansson, David Dufke, Johan Berg
  • Publication number: 20240302367
    Abstract: This document relates to materials and methods for assessing and/or treating mammals (e.g., humans having autoimmune diseases). For example, materials and methods for determining if a mammal (e.g., a human having an autoimmune disease) has one or more antibodies that can be used to identify the mammal as having a lower risk of cancer or as having a higher risk of cancer are provided. Materials and methods for treating a mammal (e.g., a human) identified as having a higher cancer risk for cancer are also provided.
    Type: Application
    Filed: June 7, 2022
    Publication date: September 12, 2024
    Inventors: Antony Rosen, Livia A. Casciola-Rosen, David Fiorentino
  • Publication number: 20240299491
    Abstract: Knee pain caused by osteoarthritis is relieved by modifying the shape change of bone(s) underlying articular cartilage, by a method comprising evaluating the bone shape of the patient's joint, injecting the patient with a peptide of SEQ ID No. 1 or applying other therapeutic interventions that can reduce the shape change of the bone(s) underlying articular cartilage, and thereafter evaluating the bone shape of the patient's joint.
    Type: Application
    Filed: March 11, 2024
    Publication date: September 12, 2024
    Inventors: Yoshinari Kumagai, Dawn McGuire, Meghan Miller, David Rosen
  • Patent number: 12087947
    Abstract: Secondary batteries and methods of manufacture thereof are provided. A secondary battery can comprise an offset between electrode and counter-electrode layers in a unit cell. Secondary batteries can be prepared by removing a population of negative electrode subunits from a negative electrode sheet, the negative electrode sheet comprising a negative electrode sheet edge margin and at least one negative electrode sheet weakened region that is internal to the negative electrode sheet edge margin, removing a population of separator layer subunits from a separator sheet, and removing a population of positive electrode subunits from a positive electrode sheet, the positive electrode sheet comprising a positive electrode edge margin and at least one positive electrode sheet weakened region that is internal to the positive electrode sheet edge margin, and stacking members of the negative electrode subunit population, the separator layer subunit population and the positive electrode subunit population.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: September 10, 2024
    Assignee: Enovix Corporation
    Inventors: Robert S. Busacca, Ashok Lahiri, Murali Ramasubramanian, Bruno A. Valdes, Gardner Cameron Dales, Christopher J. Spindt, Geoffrey Matthew Ho, Harrold J. Rust, III, James D. Wilcox, John F. Varni, Kim Han Lee, Nirav S. Shah, Richard J. Contreras, Lynn Van Erden, Ken S. Matsubayashi, Jeremie J. Dalton, Jason Newton Howard, Robert Keith Rosen, Jonathan C. Doan, Michael J. Armstrong, Anthony Calcaterra, Benjamin L. Cardozo, Joshua David Winans, Neelam Singh, Jeffrey Glenn Buck, Thomas John Schuerlein, Kim Lester Fortunati, Neal Sarswat
  • Patent number: 12070110
    Abstract: A case for an optical instrument is provided. The case has a body with a bottom and two pairs of oppositely disposed side walls connected to the body forming a cavity. The case also includes a lid having a top cover and two pairs of oppositely disposed side portions, each of which corresponds with and overlaps a corresponding side wall of the body when the lid is in a closed position. A first pair of the two pairs of side walls each includes an elastic chord which connects the given side wall to the corresponding side portion of the lid.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: August 27, 2024
    Assignee: Sheltered Wings, Inc.
    Inventors: Michael Rosen, David Hamilton, Rob Morell
  • Publication number: 20240280737
    Abstract: An organic light emitting diode (OLED) display includes a pixelated OLED display panel and a color-correction component disposed on the pixelated OLED display panel. The pixelated OLED display panel has a ratio of blue-to-red color mixing weights at 30 degrees of ?030, and a ratio of blue-to-red color mixing weights at 45 degrees of ?045, where ?045??030?1.05 and 1.5??045?1.1. The color-correction component is configured such that a ratio of blue-to-red color mixing weights at 45 degrees of the display is ?45 and a ratio of blue-to-red color mixing weights at 30 degrees of the display is ?30, where ?045?0.1??45?2.1??045 and ?030?0.05??30?2.05??030. Methods of making OLED displays are described.
    Type: Application
    Filed: April 30, 2024
    Publication date: August 22, 2024
    Inventors: Nicholas C. Erickson, David G. Freier, Robert L. Brott, Bing Hao, David A. Rosen, Stephen M. Menke, Bert T. Chien, Seong Taek Lee, Encai Hao, Zhaohui Yang, Albert I. Everaerts, Yongshang Lu, William Blake Kolb, Keith R. Bruesewitz, Adam D. Haag, Sun-Yong Park, Timothy J. Nevitt (Deceased), Brianna N. Wheeler, Jody L. Peterson, Gilles J. Benoit
  • Publication number: 20240256088
    Abstract: A display system for sensing a finger of a user applied to the display system includes a display panel; a sensor for sensing the finger; a sensing light source configured to emit a first light having a first wavelength W1; and a reflective polarizer disposed between the display panel and the sensor. For a substantially normally incident light, an optical transmittance of the reflective polarizer versus wavelength for a first polarization state has a band edge such that for a first wavelength range extending from a smaller wavelength L1 to a greater wavelength L2 and including W1, where 30 nm?L2?L1?50 nm and L1 is greater than and within about 20 nm of a wavelength L3 corresponding to an optical transmittance of about 50% along the band edge, the optical transmittance has an average of greater than about 75%.
    Type: Application
    Filed: March 14, 2024
    Publication date: August 1, 2024
    Inventors: Bharat R. Acharya, Robert D. Taylor, Joseph P. Attard, Benjamin J. Forsythe, David T. Yust, Matthew E. Sousa, Jason S. Petaja, Anthony M. Renstrom, William Blake Kolb, Matthew S. Cole, Matthew S. Stay, Matthew R.D. Smith, Jeremy O. Swanson, Tri D. Pham, David A. Rosen, Qunyi Chen, Lisa A. DeNicola, Quinn D. Sanford, Carl A. Stover, Lin Zhao, Gilles J. Benoit
  • Publication number: 20240255678
    Abstract: An optically diffusive film (200) includes a plurality of particles (10) dispersed in a binder (20). The particles (10) and the binder (20) have respective indices n1b and n2b along a same in-plane block-direction of the optically diffusive film (200), and respective indices n1p and n2p along an in-plane pass-direction orthogonal to the block-direction, such that for at least a first wavelength in a first wavelength range extending from about 400 nm to about 1000 nm: a magnitude of a difference between n1b and n2b is greater than about 0.05; and a magnitude of a difference between n1p and n2p is less than about 0.05. For substantially normally incident light and for at least the first wavelength, the optically diffusive film (200) may be more optically diffuse for a light polarized along a block-direction (b) and less optically diffusive for light polarized along an orthogonal pass-direction (p).
    Type: Application
    Filed: May 5, 2022
    Publication date: August 1, 2024
    Inventors: Carl A. Stover, Benjamin J. Forsythe, David A. Rosen, Stephen A. Johnson
  • Patent number: 12036241
    Abstract: Compounds that either produce a higher proportion or greater absolute number of phenotypically identified naive, stem cell memory, central memory T cells, adaptive NK cells, and type I NKT cells are identified. Compositions and methods for modulating immune cells including T, NK, and NKT cells for adoptive cell therapies, such as those providing improvements in one or more therapeutic outcomes, are provided.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: July 16, 2024
    Assignees: FATE THERAPEUTICS, INC., JUNO THERAPEUTICS, INC.
    Inventors: Jonathan Rosen, Eigen Peralta, Ian Hardy, Betsy D. Rezner, Christian Maine, Daniel Shoemaker, David Robbins, Lucas Thompson
  • Publication number: 20240219719
    Abstract: An optical system includes a display, a reflective polarizer, and a glare trap. The glare trap includes a plurality of slats having a length L and a width W, L/W?10. The slats form a plurality of elongated slots therebetween substantially filled with air. The reflective polarizer has an average optical reflectance of at least 40% for a first polarization state and an average optical transmittance of at least 40% for an orthogonal second polarization state. For each of the first and second polarization states, the glare trap has an average specular optical transmittance of between about 20% to about 80% and an average total optical reflectance of less than about 20%. For at least one wavelength in the visible wavelength range, an optical transmittance of the glare trap includes a first transmittance peak at a first peak angle with a corresponding FWHIM of less than about 30 degrees.
    Type: Application
    Filed: May 5, 2022
    Publication date: July 4, 2024
    Inventors: Daniel S. Bates, Craig R. Schardt, Jincy Jose, David A. Rosen, David G. Freier, Stephan J. Pankralz
  • Publication number: 20240202272
    Abstract: Digitally distributing media content using a distribution backbone system, including: receiving a request for media content from a client, the request including a client profile; performing inventory and analysis of source assets by iteratively progressing through the client profile to create output; performing a capability mapping in which a series of rules that allow the source assets to be mapped to the client profile; and planning a manufacturing process, which determines work items and execution steps from capabilities mapped in response to the request for media content from the client.
    Type: Application
    Filed: October 23, 2023
    Publication date: June 20, 2024
    Inventors: Rick Dinicola, David Rosen, Ryan Kido, Tatsuya Oiye, Keith Stevens
  • Patent number: 12007593
    Abstract: An OLED display including a display panel and a color-correction component is described. A plurality of comparative display panels otherwise equivalent to the display panel but having one or more different optical thicknesses of OLED layers have a maximum white-point color shift from 0 to 45 degrees of WPCSC45 and a white-point axial efficiency of WPAEC. The plurality of comparative display panels defines a performance curve along a boundary of performance points. The OLED display and the display panel have respective maximum white-point color shifts from 0 to 45 degrees of WPCS45 and WPCS045 and respective white-point axial efficiencies of WPAE and WPAE0. WPCS045 and WPAE0 defines a performance point of the display panel to the right of the performance curve and WPCS45 and WPAE defines a performance point of the OLED display above or to the left of the performance curve. Methods of making the OLED display are described.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: June 11, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Nicholas C. Erickson, David G. Freier, Robert L Brott, Bing Hao, David A. Rosen, Stephen M. Menke, Bert T. Chien, Seong Taek Lee, Encai Hao, Zhaohui Yang, Albert I. Everaerts, Yongshang Lu, William Blake Kolb, Keith R. Bruesewitz, Adam D. Haag, Sun-Yong Park, Timothy J. Nevitt, Brianna N. Wheeler, Jody L. Peterson, Gilles J. Benoit
  • Patent number: 11963996
    Abstract: Knee pain caused by osteoarthritis is relieved by modifying the shape change of bone(s) underlying articular cartilage, by a method comprising evaluating the bone shape of the patient's joint, injecting the patient with a peptide of SEQ ID No. 1 or applying other therapeutic interventions that can reduce the shape change of the bone(s) underlying articular cartilage, and thereafter evaluating the bone shape of the patient's joint.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: April 23, 2024
    Assignee: ORTHOTROPHIX, Inc.
    Inventors: Yoshinari Kumagai, Dawn McGuire, Meghan Miller, David Rosen
  • Patent number: 11960683
    Abstract: A display system for sensing a finger of a user applied to the display system includes a display panel; a sensor for sensing the finger; a sensing light source configured to emit a first light having a first wavelength W1; and a reflective polarizer disposed between the display panel and the sensor. For a substantially normally incident light, an optical transmittance of the reflective polarizer versus wavelength for a first polarization state has a band edge such that for a first wavelength range extending from a smaller wavelength L1 to a greater wavelength L2 and including W1, where 30 nm?L2?L1?50 nm and L1 is greater than and within about 20 nm of a wavelength L3 corresponding to an optical transmittance of about 50% along the band edge, the optical transmittance has an average of greater than about 75%.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: April 16, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Bharat R. Acharya, Robert D. Taylor, Joseph P. Attard, Benjamin J. Forsythe, David T. Yust, Matthew E. Sousa, Jason S. Petaja, Anthony M. Renstrom, William Blake Kolb, Matthew S. Cole, Matthew S. Stay, Matthew R. D. Smith, Jeremy O. Swanson, Tri D. Pham, David A. Rosen, Qunyi Chen, Lisa A. DeNicola, Quinn D. Sanford, Carl A. Stover, Lin Zhao, Gilles J. Benoit
  • Patent number: 11885999
    Abstract: An optical construction includes a reflective polarizer and an optically diffusive film disposed on the reflective polarizer. The reflective polarizer includes an outer layer including a plurality of first particles partially protruding from a first major surface thereof to form a structured major surface. A first optically diffusive layer is conformably disposed on the structured major surface. The optically diffusive film includes a second optically diffusive layer including a plurality of nanoparticles dispersed therein, and a structured layer including a structured major surface. For a substantially normally incident light and a visible wavelength range from about 450 nm to about 650 nm and an infrared wavelength range from about 930 nm to about 970 nm, the second optically diffusive layer has an average specular transmittance Vs in the visible wavelength range and an average specular transmittance Is in the infrared wavelength range, where Is/Vs?2.5.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: January 30, 2024
    Assignee: 3M INNOVATION PROPERTIES COMPANY
    Inventors: Bharat R. Acharya, Robert D. Taylor, Joseph P. Attard, Benjamin J. Forsythe, David T. Yust, Matthew E. Sousa, Jason S. Petaja, Anthony M. Renstrom, William Blake Kolb, Matthew S. Cole, Matthew S. Stay, Matthew R.D. Smith, Jeremy O. Swanson, Tri D. Pham, David A. Rosen, Qunyi Chen, Lisa A. DeNicola, Quinn D. Sanford, Carl A. Stover, Lin Zhao, Gilles J. Benoit
  • Publication number: 20230414705
    Abstract: Compounds, pharmaceutical compositions, and a method of treating hard tissue diseases and disorders are disclosed. The compounds may be a peptide and is structured to bind integrin ?v?3 expressed by osteocytes and by selective binding to the cell surface integrin on hard tissue forming cells regulate three-dimensional bone shape, cartilage formation and repair.
    Type: Application
    Filed: September 5, 2023
    Publication date: December 28, 2023
    Applicant: OrthoTrophix, Inc.
    Inventors: Yoshinari Kumagai, Dawn McGuire, Meghan Miller, David Rosen
  • Publication number: 20230400608
    Abstract: An optically diffusive film includes a structured first major surface with a plurality of substantially parallel, substantially planar first surfaces arranged across the first major surface at a plurality of different first height levels. A height difference between any two of the first surfaces is S times Hmin, where S is a number within 15% of an integer and Hmin is a height difference between lowest and next-lowest first surfaces. For a substantially collimated incident light and for a first wavelength in a human-visible wavelength range, the optically diffusive film has an optical haze, Hv, and an optical clarity, Cv, and for a second wavelength in an infrared wavelength range, the optically diffusive film has an optical haze, Hi, and an optical clarity, Ci, such that the ratio Hv/Hi is greater than or equal to 1.5 and the ratio Ci/Cv is greater than or equal to 1.5.
    Type: Application
    Filed: October 1, 2021
    Publication date: December 14, 2023
    Inventors: Steven H. Kong, Nicholas C. Erickson, David A. Rosen
  • Patent number: 11828972
    Abstract: An optical system includes an extended illumination source configured to emit light from an extended emission surface thereof and a light redirecting layer disposed on the extended emission surface. The light redirecting layer has a structured major surface that includes a regular array of light redirecting structures, each light redirecting structure including a plurality of facets; and a plurality of discrete spaced apart window segments. The optical system includes a plurality of reflective segments where each reflective segment is disposed on a corresponding window segment. For substantially normally incident light, each reflective segment has a total: average optical reflectance of at least 30% in a visible wavelength range extending from about 420 nm to about 650 nm; and optical transmittance of at least 10% for at least one infrared wavelength in an infrared wavelength range extending from about 800 nm to about 1200 nm.
    Type: Grant
    Filed: October 2, 2020
    Date of Patent: November 28, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Tao Liu, Gary T. Boyd, David A. Rosen, Bharat R. Acharya, Kevin W. Gotrik, David J. Rowe, Caleb T. Nelson
  • Publication number: 20230350101
    Abstract: An optical film for reducing at least one of sparkle and moire in a display system includes a structured first major surface that, in at least a first cross-section in a first plane substantially orthogonal to the optical film, has a sinusoidal shape having a variable pitch of greater than about 0.5 microns. For a substantially normally incident light and blue, green, and red wavelengths that are at least 50 nm apart from each other and are disposed within respective blue, green, and red wavelength ranges, optical transmissions of the optical film versus transmitted angle for the blue, green and red wavelengths have respective blue, green, and red transmission bands disposed at angles greater than about 1 degree and having respective blue, green, and red full width at half maxima (FWHMs), at least two of which at least partially overlap.
    Type: Application
    Filed: April 25, 2023
    Publication date: November 2, 2023
    Inventors: Gary T. Boyd, David A. Rosen, Tao Liu, Matthew M. Philippi, Brett J. Sitter