Patents by Inventor David W. Knoeppel

David W. Knoeppel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150057383
    Abstract: A method of making a foamable polystyrene composition includes combining a styrenic monomer and a co-monomer containing a polar functional group to obtain a mixture, subjecting the mixture to polymerization to obtain a styrenic co-polymer, and combining the styrenic co-polymer with a blowing agent in a foaming process to obtain foamed articles.
    Type: Application
    Filed: November 5, 2014
    Publication date: February 26, 2015
    Inventors: Wei Wang, David W. Knoeppel, Melissa Greenberg
  • Patent number: 8957152
    Abstract: A styrenic composition including a polar modified styrenic co-polymer resulting from the polymerization of a combined mixture of at least one styrenic monomer and at least one comonomer and a biodegradable component is disclosed. The at least one comonomer includes a polar functional group and the polar modified styrenic co-polymer and the biodegradable component are combined to obtain a styrenic composition having a biodegradable component. Also disclosed is a method of enhancing bio-polymer miscibility in a styrenic based polymer. The polarity of a blend is manipulated by combining a styrenic monomer and a polar co-monomer to form a combined mixture and subjecting the combined mixture to polymerization to obtain a styrenic polymer blend to which a bio-polymer is added.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: February 17, 2015
    Assignee: Fina Technology, Inc.
    Inventors: Wei Wang, David W. Knoeppel, Jose Sosa
  • Publication number: 20150011665
    Abstract: Cellular and multi-cellular polystyrene and polystyrenic foams and methods of forming such foams are disclosed. The foams include an expanded polystyrene formed from expansion of an expandable polystyrene including an adsorbent comprising alumina, wherein the multi-cellular polystyrene exhibits a multi-cellular size distribution. The process for forming a foamed article includes providing a formed styrenic polymer and contacting the formed styrenic polymer with a first blowing agent and an adsorbent comprising alumina to form extrusion polystyrene. The process further includes forming the extrusion styrenic polymer into an expanded styrenic polymer and forming the expanded styrenic polymer into a foamed article.
    Type: Application
    Filed: September 24, 2014
    Publication date: January 8, 2015
    Inventors: Jose M. Sosa, David W. Knoeppel
  • Patent number: 8912242
    Abstract: A method of making a foamable polystyrene composition includes combining a styrenic monomer and a co-monomer containing a polar functional group to obtain a mixture, subjecting the mixture to polymerization to obtain a styrenic co-polymer, and combining the styrenic co-polymer with a blowing agent in a foaming process to obtain foamed articles.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: December 16, 2014
    Assignee: Fina Technology, Inc.
    Inventors: Wei Wang, David W. Knoeppel, Melissa Greenberg
  • Patent number: 8889752
    Abstract: Cellular and multi-cellular polystyrene and polystyrenic foams and methods of forming such foams are disclosed. The foams include an expanded polystyrene formed from expansion of an expandable polystyrene including an adsorbent comprising alumina, wherein the multi-cellular polystyrene exhibits a multi-cellular size distribution. The process for forming a foamed article includes providing a formed styrenic polymer and contacting the formed styrenic polymer with a first blowing agent and an adsorbent comprising alumina to form extrusion polystyrene. The process further includes forming the extrusion styrenic polymer into an expanded styrenic polymer and forming the expanded styrenic polymer into a foamed article.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: November 18, 2014
    Assignee: Fina Technology, Inc.
    Inventors: Jose Sosa, David W. Knoeppel
  • Publication number: 20140303324
    Abstract: A high impact polystyrene (HIPS) is made from styrene monomer and 3 to 20 wt % of an elastomeric component phase including polybutadiene rubber and styrene butadiene copolymer. The HIPS has a 60 degree gloss of 90 or more, a Gardner drop of at least 10 in-lb, and an Izod impact strength of 1.8 ft-lb/in or more. The HIPS can have salami morphology with rubber particle size between 1 and 1.3 microns.
    Type: Application
    Filed: February 14, 2014
    Publication date: October 9, 2014
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: David W. Knoeppel, Likuo Sun, Jon Tippet
  • Patent number: 8809459
    Abstract: A method of preparing a polystyrene blend that includes combining a first polystyrene composition having a first melt flow index with a second polystyrene composition having a second melt flow index and forming a polystyrene blend, the second melt flow index being at least 2 dg/min higher that the first melt flow index. The polystyrene blend has an observed tensile strength value greater than 3% above the expected tensile strength value. The second polystyrene composition can include a recycled polystyrene material, which can include expanded polystyrene. An alternate method of preparing the polystyrene blend includes combining a polystyrene composition with a styrene monomer to form a reaction mixture, polymerizing the reaction mixture and obtaining a polystyrene blend, where the polystyrene containing composition has a melt flow index at least 2 dg/min higher than the melt flow index of the styrene monomer after it has been polymerized.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: August 19, 2014
    Assignee: Fina Technology, Inc.
    Inventors: Camille Grossetete, David W. Knoeppel, Jose M. Sosa, Shane Steagall, Carlos Corletto
  • Publication number: 20140114004
    Abstract: Disclosed is a method of making a polystyrene based nanocomposite by combining a monomer with a nanoparticle to form a mixture and subjecting the mixture to polymerization conditions to produce a polymeric composite. In an embodiment the nanoparticle has been treated with an additive prior to combining with the monomer and the additive contains a silane moiety.
    Type: Application
    Filed: December 20, 2013
    Publication date: April 24, 2014
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: James R. Butler, David W. Knoeppel
  • Patent number: 8691914
    Abstract: A high impact polystyrene (HIPS) is made from styrene monomer and 3 to 20 wt % of an elastomeric component phase including polybutadiene rubber and styrene butadiene copolymer. The HIPS has a 60 degree gloss of 90 or more, a Gardner drop of at least 10 in-lb, and an Izod impact strength of 1.8 ft-lb/in or more. The HIPS can have salami morphology with rubber particle size between 1 and 1.3 microns.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: April 8, 2014
    Assignee: Fina Technology, Inc.
    Inventors: David W. Knoeppel, Likuo Sun, Jon Tippet
  • Patent number: 8653187
    Abstract: Disclosed is a method of making a polystyrene based nanocomposite by combining a monomer with a nanoparticle to form a mixture and subjecting the mixture to polymerization conditions to produce a polymeric composite. In an embodiment the nanoparticle has been treated with an additive prior to combining with the monomer and the additive contains a silane moiety.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: February 18, 2014
    Assignee: Fina Technology, Inc.
    Inventors: James R. Butler, David W. Knoeppel
  • Publication number: 20130137808
    Abstract: Disclosed is a method of making a polystyrene based nanocomposite by combining a monomer with a nanoparticle to form a mixture and subjecting the mixture to polymerization conditions to produce a polymeric composite. In an embodiment the nanoparticle has been treated with an additive prior to combining with the monomer and the additive contains a silane moiety.
    Type: Application
    Filed: November 29, 2011
    Publication date: May 30, 2013
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: James R. Butler, David W. Knoeppel
  • Patent number: 8389636
    Abstract: A method of preparing a polystyrene blend that includes combining a first polystyrene composition having a first melt flow index with a second polystyrene composition having a second melt flow index and forming a polystyrene blend, the second melt flow index being at least 2 dg/min higher that the first melt flow index. The polystyrene blend has an observed tensile strength value greater than 3% above the expected tensile strength value. The second polystyrene composition can include a recycled polystyrene material, which can include expanded polystyrene. An alternate method of preparing the polystyrene blend includes combining a polystyrene composition with a styrene monomer to form a reaction mixture, polymerizing the reaction mixture and obtaining a polystyrene blend, where the polystyrene containing composition has a melt flow index at least 2 dg/min higher than the melt flow index of the styrene monomer after it has been polymerized.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: March 5, 2013
    Assignee: Fina Technology, Inc.
    Inventors: Camille Grossetete, David W. Knoeppel, Jose M. Sosa, Shane Steagall, Carlos Corletto
  • Publication number: 20130005886
    Abstract: A styrenic composition including a polar modified styrenic co-polymer resulting from the polymerization of a combined mixture of at least one styrenic monomer and at least one comonomer and a biodegradable component is disclosed. The at least one comonomer includes a polar functional group and the polar modified styrenic co-polymer and the biodegradable component are combined to obtain a styrenic composition having a biodegradable component. Also disclosed is a method of enhancing bio-polymer miscibility in a styrenic based polymer. The polarity of a blend is manipulated by combining a styrenic monomer and a polar co-monomer to form a combined mixture and subjecting the combined mixture to polymerization to obtain a styrenic polymer blend to which a bio-polymer is added.
    Type: Application
    Filed: June 29, 2011
    Publication date: January 3, 2013
    Applicant: FINA TECHNOLOGY, Inc.
    Inventors: Wei Wang, David W. Knoeppel, Jose Sosa
  • Publication number: 20130005912
    Abstract: A method of making a styrenic composition having a high melt strength including combining a styrenic monomer and a second monomer to form a combined mixture and subjecting the combined mixture to polymerization to obtain a styrenic co-polymer, wherein the second monomer comprises a hydroxyl functional group and wherein the styrenic composition has a greater melt strength than that of general purpose polystyrene.
    Type: Application
    Filed: June 29, 2011
    Publication date: January 3, 2013
    Applicant: FINA TECHNOLOGY, Inc.
    Inventors: Wei Wang, David W. Knoeppel
  • Publication number: 20120289656
    Abstract: A high impact polystyrene (HIPS) is made from styrene monomer and 3 to 20 wt % of an elastomeric component phase including polybutadiene rubber and styrene butadiene copolymer. The HIPS has a 60 degree gloss of 90 or more, a Gardner drop of at least 10 in-lb, and an Izod impact strength of 1.8 ft-lb/in or more. The HIPS can have salami morphology with rubber particle size between 1 and 1.3 microns.
    Type: Application
    Filed: April 13, 2012
    Publication date: November 15, 2012
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: David W. Knoeppel, Likuo Sun, Jon Tippet
  • Publication number: 20120259071
    Abstract: A method of preparing a polystyrene blend that includes combining a first polystyrene composition having a first melt flow index with a second polystyrene composition having a second melt flow index and forming a polystyrene blend, the second melt flow index being at least 2 dg/min higher that the first melt flow index. The polystyrene blend has an observed tensile strength value greater than 3% above the expected tensile strength value. The second polystyrene composition can include a recycled polystyrene material, which can include expanded polystyrene. An alternate method of preparing the polystyrene blend includes combining a polystyrene composition with a styrene monomer to form a reaction mixture, polymerizing the reaction mixture and obtaining a polystyrene blend, where the polystyrene containing composition has a melt flow index at least 2 dg/min higher than the melt flow index of the styrene monomer after it has been polymerized.
    Type: Application
    Filed: June 22, 2012
    Publication date: October 11, 2012
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Camille Grossetete, David W. Knoeppel, Jose M. Sosa, Shane Steagall, Carlos Corleto
  • Publication number: 20120208911
    Abstract: A method of making a foamable polystyrene composition includes combining a styrenic monomer and a co-monomer containing a polar functional group to obtain a mixture, subjecting the mixture to polymerization to obtain a styrenic co-polymer, and combining the styrenic co-polymer with a blowing agent in a foaming process to obtain foamed articles.
    Type: Application
    Filed: January 11, 2012
    Publication date: August 16, 2012
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Wei Wang, David W. Knoeppel, Melissa Greenberg
  • Publication number: 20120208913
    Abstract: Foamable polystyrene compositions with enhanced blowing agent solubility and methods of making such polystyrene compositions by incorporating a polar additive in styrenic polymer or copolymers.
    Type: Application
    Filed: January 11, 2012
    Publication date: August 16, 2012
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Wei Wang, Jose M. Sosa, David W. Knoeppel
  • Patent number: 8242212
    Abstract: A method of preparing a polystyrene blend that includes combining a first polystyrene composition having a first melt flow index with a second polystyrene composition having a second melt flow index and forming a polystyrene blend, the second melt flow index being at least 2 dg/min higher that the first melt flow index. The polystyrene blend has an observed tensile strength value greater than 3% above the expected tensile strength value. The second polystyrene composition can include a recycled polystyrene material, which can include expanded polystyrene. An alternate method of preparing the polystyrene blend includes combining a polystyrene composition with a styrene monomer to form a reaction mixture, polymerizing the reaction mixture and obtaining a polystyrene blend, where the polystyrene containing composition has a melt flow index at least 2 dg/min higher than the melt flow index of the styrene monomer after it has been polymerized.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: August 14, 2012
    Assignee: Fina Technology, Inc.
    Inventors: Camille Grossetete, David W. Knoeppel, Jose M. Sosa, Shane Steagall, Carlos Corleto
  • Publication number: 20120064268
    Abstract: Disclosed is a process for making a Ziegler-Natta catalyst having controlled particle size and distribution. The process enables improved catalyst consistency regardless of production scale and customizing of catalyst morphology to desired polymer morphology. The novel catalyst components may be used to prepare polymers, and end-use articles therefrom, having desirable properties. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: October 13, 2011
    Publication date: March 15, 2012
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Kayo Vizzini, Henry Enriquez, Steven D. Gray, Tim J. Coffy, David W. Knoeppel