Patents by Inventor David W. Knoeppel

David W. Knoeppel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110306691
    Abstract: Cellular and multi-cellular polystyrene and polystyrenic foams and methods of forming such foams are disclosed. The foams include an expanded polystyrene formed from expansion of an expandable polystyrene including an adsorbent comprising alumina, wherein the multi-cellular polystyrene exhibits a multi-cellular size distribution. The process for forming a foamed article includes providing a formed styrenic polymer and contacting the formed styrenic polymer with a first blowing agent and an adsorbent comprising alumina to form extrusion polystyrene. The process further includes forming the extrusion styrenic polymer into an expanded styrenic polymer and forming the expanded styrenic polymer into a foamed article.
    Type: Application
    Filed: June 6, 2011
    Publication date: December 15, 2011
    Inventors: Jose Sosa, David W. Knoeppel
  • Patent number: 8063159
    Abstract: Disclosed is a process for making a Ziegler-Natta catalyst having controlled particle size and distribution. It comprises altering the precipitation of a catalyst component from a catalyst synthesis solution including a soluble magnesium containing catalyst precursor by controlling the concentration of either the soluble magnesium containing catalyst precursor, wherein the average particle size of the catalyst component is increased, and the particle size distribution increased, with a decreased concentration of the soluble magnesium containing catalyst precursor; or of the precipitating agent, wherein the average particle size of the catalyst component is increased, and the particle size distribution increased with an increased concentration of the precipitating agent. Use of the invention enables improved catalyst consistency regardless of production scale and customizing of catalyst morphology to desired polymer morphology.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: November 22, 2011
    Assignee: Fina Technology, Inc
    Inventors: Kayo Vizzini, Henry Enriquez, Steven D. Gray, Tim J. Coffy, David W. Knoeppel
  • Publication number: 20110245428
    Abstract: A method of preparing a polystyrene blend that includes combining a first polystyrene composition having a first melt flow index with a second polystyrene composition having a second melt flow index and forming a polystyrene blend, the second melt flow index being at least 2 dg/min higher that the first melt flow index. The polystyrene blend has an observed tensile strength value greater than 3% above the expected tensile strength value. The second polystyrene composition can include a recycled polystyrene material, which can include expanded polystyrene. An alternate method of preparing the polystyrene blend includes combining a polystyrene composition with a styrene monomer to form a reaction mixture, polymerizing the reaction mixture and obtaining a polystyrene blend, where the polystyrene containing composition has a melt flow index at least 2 dg/min higher than the melt flow index of the styrene monomer after it has been polymerized.
    Type: Application
    Filed: March 29, 2011
    Publication date: October 6, 2011
    Applicant: Fina Technology, Inc.
    Inventors: Camille Grossetete, David W. Knoeppel, Jose M. Sosa, Shane Steagall, Carlos Corleto
  • Publication number: 20090023875
    Abstract: Disclosed is a process for making a Ziegler-Natta catalyst having controlled particle size and distribution. It comprises altering the precipitation of a catalyst component from a catalyst synthesis solution including a soluble magnesium containing catalyst precursor by controlling the concentration of either the soluble magnesium containing catalyst precursor, wherein the average particle size of the catalyst component is increased, and the particle size distribution increased, with a decreased concentration of the soluble magnesium containing catalyst precursor; or of the precipitating agent, wherein the average particle size of the catalyst component is increased, and the particle size distribution increased with an increased concentration of the precipitating agent. Use of the invention enables improved catalyst consistency regardless of production scale and customizing of catalyst morphology to desired polymer morphology.
    Type: Application
    Filed: July 16, 2007
    Publication date: January 22, 2009
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Kayo Vizzini, Henry Enriquez, Steven D. Gray, Tim J. Coffy, David W. Knoeppel
  • Publication number: 20080269441
    Abstract: A process for the polymerization of ethylene to provide an ethylene polymer of reduced Yellowness Index. A feed stream, comprising an inert hydrocarbon diluent containing ethylene in a minor amount, is supplied to a polymerization reactor. A chromium-based polymerization catalyst and a triethylboron co-catalyst are incorporated into the feed stream within the reactor. The polymerization catalyst will normally be used in an amount within the range of 0.008-0.1 wt. % of the diluent in the feed stream and the triethylboron co-catalyst is incorporated in an amount within the range of 0.1-50 ppm of the diluent. The polymer fluff from the reactor is heated to a temperature sufficient to melt the fluff which is then extruded to produce a polymer product. The Yellowness Index after high temperature aging is at least 5% less than the corresponding Yellowness Index of a corresponding polymer product produced without the triethylboron co-catalyst.
    Type: Application
    Filed: April 30, 2007
    Publication date: October 30, 2008
    Inventors: Gerhard Guenther, David W. Knoeppel, Steven D. Gray, Tim J. Coffy
  • Publication number: 20080153998
    Abstract: Chromium catalysts may be prepared using a process including contacting a chromium catalyst precursor with a treatment agent. This catalyst may be used for polymerization of a variety of monomers, particularly olefins, to form polymers for a wide variety of applications. The catalyst exhibits desirable activity rates and polymers produced therewith may exhibit improved melt flow, polydisperity values, and changes in shear thinning as compared to those prepared under similar conditions but using the same treatment agent as a cocatalyst instead.
    Type: Application
    Filed: December 20, 2006
    Publication date: June 26, 2008
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Ricky McCormick, David W. Knoeppel, Steven D. Gray, Tim J. Coffy
  • Patent number: 6930071
    Abstract: A Ziegler-Natta type catalyst component can be produced by a process comprising contacting a magnesium dialkoxide compound with a halogenating agent to form a reaction product A, and contacting reaction product A with a first, second and third halogenating/titanating agents. Catalyst components, catalysts, catalyst systems, polyolefin, products made therewith, and methods of forming each are disclosed. The reaction products can be washed with a hydrocarbon solvent to reduce titanium species [Ti] content to less than about 100 mmol/L.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: August 16, 2005
    Assignee: Fina Technology, Inc.
    Inventors: David W. Knoeppel, Tim J. Coffy, Henry Enriquez, Steven D. Gray
  • Patent number: 6864207
    Abstract: A process for making a polyolefin catalyst component, catalyst and polymer resin is disclosed. Controlling the viscosity of a catalyst synthesis solution with the addition of aluminum alkyl alters the precipitation of the catalyst component from a catalyst synthesis solution. The average particle size of the catalyst component increases with an increased concentration of aluminum alkyl in the synthesis solution. The catalyst component can be produced by a process comprising contacting a magnesium alkyl compound with an alcohol and an aluminum alkyl to form a magnesium dialkoxide. Catalyst components, catalysts, catalyst systems, polyolefin, products made therewith, and methods of forming each are disclosed. The reaction products can be washed with a hydrocarbon solvent to reduce titanium species [Ti] content to less than about 100 mmol/L.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: March 8, 2005
    Assignee: Fina Technology, Inc.
    Inventors: David W. Knoeppel, Tim J. Coffy, Henry Enriquez, Steven D. Gray
  • Publication number: 20040058803
    Abstract: A Ziegler-Natta type catalyst component can be produced by a process comprising contacting a magnesium dialkoxide compound with a halogenating agent to form a reaction product A, and contacting reaction product A with a first, second and third halogenating/titanating agents. Catalyst components, catalysts, catalyst systems, polyolefin, products made therewith, and methods of forming each are disclosed. The reaction products can be washed with a hydrocarbon solvent to reduce titanium species [Ti] content to less than about 100 mmol/L.
    Type: Application
    Filed: September 22, 2003
    Publication date: March 25, 2004
    Inventors: David W. Knoeppel, Tim J. Coffy, Henry Enriquez, Steven D. Gray
  • Publication number: 20040058802
    Abstract: A process for making a polyolefin catalyst component, catalyst and polymer resin is disclosed. Controlling the viscosity of a catalyst synthesis solution with the addition of aluminum alkyl alters the precipitation of the catalyst component from a catalyst synthesis solution. The average particle size of the catalyst component increases with an increased concentration of aluminum alkyl in the synthesis solution. The catalyst component can be produced by a process comprising contacting a magnesium alkyl compound with an alcohol and an aluminum alkyl to form a magnesium dialkoxide. Catalyst components, catalysts, catalyst systems, polyolefin, products made therewith, and methods of forming each are disclosed. The reaction products can be washed with a hydrocarbon solvent to reduce titanium species [Ti] content to less than about 100 mmol/L.
    Type: Application
    Filed: September 22, 2003
    Publication date: March 25, 2004
    Inventors: David W. Knoeppel, Tim J. Coffy, Henry Enriquez, Steven D. Gray
  • Publication number: 20030030174
    Abstract: High density polyethylene (HDPE) comprising narrow rheological breadth and narrow molecular weight distribution, and methods for producing such HDPE polymer are disclosed. HDPE blown resins and films produced from the HDPE of the invention, and methods of producing such resins and films are also disclosed. The novel HDPE-derived resins of the invention possess exceptional clarity and gloss in comparison to conventional HDPE-derived resin.
    Type: Application
    Filed: June 29, 2001
    Publication date: February 13, 2003
    Inventors: Steven D. Gray, David W. Knoeppel, Tim J. Coffy, Mike Goins, Michael McLeod, Greg DeKunder