Patents by Inventor David Y. Wang

David Y. Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160245741
    Abstract: Methods and systems for performing broadband spectroscopic metrology with reduced sensitivity to focus errors are presented herein. Significant reductions in sensitivity to focus position error are achieved by imaging the measurement spot onto the detector such that the direction aligned with the plane of incidence on the wafer surface is oriented perpendicular to the direction of wavelength dispersion on the detector surface. This reduction in focus error sensitivity enables reduced focus accuracy and repeatability requirements, faster focus times, and reduced sensitivity to wavelength errors without compromising measurement accuracy. In a further aspect, the dimension of illumination field projected on the wafer plane in the direction perpendicular to the plane of incidence is adjusted to optimize the resulting measurement accuracy and speed based on the nature of target under measurement.
    Type: Application
    Filed: August 24, 2015
    Publication date: August 25, 2016
    Inventors: Shankar Krishnan, Guorong V. Zhuang, David Y. Wang, Xuefeng Liu
  • Patent number: 9400246
    Abstract: The present invention may include a modulatable illumination source configured to illuminate a surface of a sample disposed on a sample stage, a detector configured to detect illumination emanating from a surface of the sample, illumination optics configured to direct illumination from the modulatable illumination source to the surface of the sample, collection optics configured to direct illumination from the surface of the sample to the detector, and a modulation control system communicatively coupled to the modulatable illumination source, wherein the modulation control system is configured to modulate a drive current of the modulatable illumination source at a selected modulation frequency suitable for generating illumination having a selected coherence feature length. In addition, the present invention includes the time-sequential interleaving of outputs of multiple light sources to generate periodic pulses trains for use in multi-wavelength time-sequential optical metrology.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: July 26, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Andrei V. Shchegrov, Lawrence D. Rotter, David Y. Wang, Andrei Veldman, Kevin Peterlinz, Gregory Brady, Derrick Shaughnessy
  • Patent number: 9310290
    Abstract: An apparatus includes (i) a bright light source for providing an illumination beam at multiple wavelengths selectable with a range from a deep ultraviolet wavelength to an infrared wavelength, (ii) illumination optics for directing the illumination beam towards a sample at selectable sets of angles of incidence (AOI's) or azimuth angles (AZ's) and polarization states to provide spectroscopic ellipsometry, wherein the illumination optics include an apodizer for controlling a spot size of the illumination beam on the sample at each of the selectable AOI/AZ sets, (iii) collection optics for directing an output beam from the sample in response to the illumination beam at each of the selectable AOI/AZ sets and polarization states towards a detector that generates an output signal or image based on the output beam, and (v) a controller for characterizing a feature of the sample based on the output signal or image.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: April 12, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: David Y. Wang, Klaus Flock, Lawrence Rotter, Shankar Krishnan, Johannes D. de Veer, Catalin Filip, Gregory Brady, Muzammil Arain, Andrei Shchegrov
  • Patent number: 9228943
    Abstract: The present invention may include an illumination source, a detector, a selectably adjustable optical system including a dynamically adjustable illumination pupil of the illumination arm, a dynamically adjustable collection pupil of the collection arm, a dynamically adjustable illumination field stop of the illumination arm, a dynamically adjustable collection field stop of the collection arm, a sensor configured to measure one or more optical characteristics of one or more components of the optical system, and a control system configured to selectably dynamically adjust at least one of the illumination pupil, the collection pupil, the illumination field stop, the collection field stop, and a spectral radiance of the illumination source.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: January 5, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: David Y. Wang, Guorong Vera Zhuang, Johannes D. de Veer, Kevin Peterlinz, Shankar Krishnan
  • Publication number: 20150363010
    Abstract: The present invention relates to a finger-driven computer mouse. The finger-driven computer mouse includes a mouse housing and finger retention device adjacent thereto. The user inserts his or her finger tips in the finger retention device and can position the mouse across a flat surface by actions of the fingers except the thumb which is used to operate mouse buttons arranged on a side surface. The finger-driven mouse allows the wrist and hand muscles to be in a relaxed, natural posture.
    Type: Application
    Filed: August 20, 2015
    Publication date: December 17, 2015
    Inventor: David Y. Wang
  • Publication number: 20150285735
    Abstract: An apparatus includes (i) a bright light source for providing an illumination beam at multiple wavelengths selectable with a range from a deep ultraviolet wavelength to an infrared wavelength, (ii) illumination optics for directing the illumination beam towards a sample at selectable sets of angles of incidence (AOI's) or azimuth angles (AZ's) and polarization states to provide spectroscopic ellipsometry, wherein the illumination optics include an apodizer for controlling a spot size of the illumination beam on the sample at each of the selectable AOI/AZ sets, (iii) collection optics for directing an output beam from the sample in response to the illumination beam at each of the selectable AOI/AZ sets and polarization states towards a detector that generates an output signal or image based on the output beam, and (v) a controller for characterizing a feature of the sample based on the output signal or image.
    Type: Application
    Filed: June 19, 2015
    Publication date: October 8, 2015
    Applicant: KLA- Tencor Corporation
    Inventors: David Y. Wang, Klaus Flock, Lawrence Rotter, Shankar Krishnan, Johannes D. de Veer, Catalin Filip, Gregory Brady, Muzammil Arain, Andrei Shchegrov
  • Patent number: 9146156
    Abstract: The present invention may include loading a diagnostic sample onto a sample stage, focusing light from an illumination source disposed on a multi-axis stage onto the diagnostic sample, collecting a portion of light reflected from a surface of the diagnostic sample utilizing a detector, wherein the illumination source and the detector are optically direct-coupled via an optical system, acquiring a set of diagnostic parameters indicative of illumination source position drift from the diagnostic sample, determining a magnitude of the illumination source position drift by comparing the acquired set of diagnostic parameters to an initial set of parameters obtained from the diagnostic sample at a previously measured alignment condition, determining a direction of the illumination source position drift; and providing illumination source position adjustment parameters configured to correct the determined magnitude and direction of the illumination source position drift to the multi-axis actuation control system of th
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: September 29, 2015
    Assignee: KLA-Tencor Corporation
    Inventors: Guorong V. Zhuang, Shankar Krishnan, Johannes D. de Veer, Klaus Flock, David Y. Wang, Lawrence D. Rotter
  • Patent number: 9116103
    Abstract: An apparatus includes (i) a bright light source for providing an illumination beam at multiple wavelengths selectable with a range from a deep ultraviolet wavelength to an infrared wavelength, (ii) illumination optics for directing the illumination beam towards a sample at selectable sets of angles of incidence (AOI's) or azimuth angles (AZ's) and polarization states to provide spectroscopic ellipsometry, wherein the illumination optics include an apodizer for controlling a spot size of the illumination beam on the sample at each of the selectable AOI/AZ sets, (iii) collection optics for directing an output beam from the sample in response to the illumination beam at each of the selectable AOI/AZ sets and polarization states towards a detector that generates an output signal or image based on the output beam, and (v) a controller for characterizing a feature of the sample based on the output signal or image.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: August 25, 2015
    Assignee: KLA-Tencor Corporation
    Inventors: David Y. Wang, Klaus Flock, Lawrence Rotter, Shankar Krishnan, Johannes D. de Veer, Catalin Filip, Gregory Brady, Muzammil Arain, Andrei Shchegrov
  • Publication number: 20150055123
    Abstract: A rotatable compensator configured to transmit non-collimated light over a broad range of wavelengths, including ultraviolet, with a high degree of retardation uniformity across the aperture is presented. In one embodiment, a rotatable compensator includes a stack of four individual plates in optical contact. The two thin plates in the middle of the stack are made from a birefringent material and are arranged to form a compound, zeroth order bi-plate. The remaining two plates are relatively thick and are made from an optically isotropic material. These plates are disposed on either end of the compound, zeroth order bi-plate. The low order plates minimize the sensitivity of retardation across the aperture to non-collimated light. Materials are selected to ensure transmission of ultraviolet light. The optically isotropic end plates minimize coherence effects induced at the optical interfaces of the thin plates.
    Type: Application
    Filed: August 22, 2014
    Publication date: February 26, 2015
    Inventors: Lawrence Rotter, Klaus Flock, Muzammil Arain, David Y. Wang
  • Publication number: 20140375981
    Abstract: An apparatus includes (i) a bright light source for providing an illumination beam at multiple wavelengths selectable with a range from a deep ultraviolet wavelength to an infrared wavelength, (ii) illumination optics for directing the illumination beam towards a sample at selectable sets of angles of incidence (AOI's) or azimuth angles (AZ's) and polarization states to provide spectroscopic ellipsometry, wherein the illumination optics include an apodizer for controlling a spot size of the illumination beam on the sample at each of the selectable AOI/AZ sets, (iii) collection optics for directing an output beam from the sample in response to the illumination beam at each of the selectable AOI/AZ sets and polarization states towards a detector that generates an output signal or image based on the output beam, and (v) a controller for characterizing a feature of the sample based on the output signal or image.
    Type: Application
    Filed: October 1, 2013
    Publication date: December 25, 2014
    Applicant: KLA-Tencor Corporation
    Inventors: David Y. Wang, Klaus Flock, Lawrence Rotter, Shankar Krishnan, Johannes D. de Veer, Catalin Filip, Gregory Brady, Muzammil Arain, Andrei Shchegrov
  • Patent number: 8896832
    Abstract: Systems and methods for discrete polarization scatterometry are provided.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: November 25, 2014
    Assignee: KLA-Tencor Corp.
    Inventors: Andrew V. Hill, Amnon Manassen, Daniel Kandel, Vladimir Levinski, Joel Seligson, Alexander Svizher, David Y. Wang, Lawrence D. Rotter, Johannes D. de Veer
  • Patent number: 8860937
    Abstract: Various metrology systems and methods for high aspect ratio and large lateral dimension structures are provided. One method includes directing light to one or more structures formed on a wafer. The light includes ultraviolet light, visible light, and infrared light. The one or more structures include at least one high aspect ratio structure or at least one large lateral dimension structure. The method also includes generating output responsive to light from the one or more structures due to the light directed to the one or more structures. In addition, the method includes determining one or more characteristics of the one or more structures using the output.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: October 14, 2014
    Assignee: KLA-Tencor Corp.
    Inventors: Thaddeus Gerard Dziura, Xuefeng Liu, David Y. Wang, Jonathan Madsen, Alexander Kuznetsov, Johannes D. de Veer, Shankar Krishnan, Derrick Shaughnessy, Andrei Shchegrov
  • Patent number: 8643841
    Abstract: A method for optically inspecting a specimen by directing a probe beam onto the specimen at varying angle of incidence and azimuth angle, thereby producing a reflected probe beam, gathering the reflected probe beam, separating the reflected probe beam as a function of wavelength, adding astigmatism to separate the reflected probe beam as a function of at least one of the angle of incidence and the azimuth angle, and evaluating the specimen based at least on changes in the reflected probe beam as a function of wavelength of the reflected probe beam and at least one of the angle of incidence and the azimuth angle.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: February 4, 2014
    Assignee: KLA-Tencor Corporation
    Inventors: Lawrence D. Rotter, David Y. Wang
  • Publication number: 20130033704
    Abstract: The present invention may include loading a diagnostic sample onto a sample stage, focusing light from an illumination source disposed on a multi-axis stage onto the diagnostic sample, collecting a portion of light reflected from a surface of the diagnostic sample utilizing a detector, wherein the illumination source and the detector are optically direct-coupled via an optical system, acquiring a set of diagnostic parameters indicative of illumination source position drift from the diagnostic sample, determining a magnitude of the illumination source position drift by comparing the acquired set of diagnostic parameters to an initial set of parameters obtained from the diagnostic sample at a previously measured alignment condition, determining a direction of the illumination source position drift; and providing illumination source position adjustment parameters configured to correct the determined magnitude and direction of the illumination source position drift to the multi-axis actuation control system of th
    Type: Application
    Filed: October 31, 2011
    Publication date: February 7, 2013
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Guorong V. Zhuang, Shankar Krishnan, Johannes D. de Veer, Klaus Flock, David Y. Wang, Lawrence D. Rotter
  • Patent number: 8111399
    Abstract: A device and methods for performing a photothermal measurement and relaxation compensation of a sample are disclosed. The device may include a probe beam source, a pump beam source, a sample, and a detector array. A method may include adjusting an intensity modulated pump beam power, adjusting a probe beam power to increase a response measurement location temperature and increase a modulated optical reflectance signal, directing the intensity modulated pump beam and the probe beam along a measurement path to a response measurement location on a sample for periodically exciting a region on the sample, detecting a reflected portion of the probe beam, and calculating an implantation dose.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: February 7, 2012
    Assignee: KLA-Tencor Corporation
    Inventors: Lawrence D. Rotter, David Y. Wang, Derrick Shaughnessy, Mark Senko
  • Publication number: 20110310388
    Abstract: Systems and methods for discrete polarization scatterometry are provided.
    Type: Application
    Filed: May 16, 2011
    Publication date: December 22, 2011
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Andrew V. Hill, Amnon Manassen, Daniel Kandel, Vladimir Levinski, Joel Seligson, Alexander Svizher, David Y. Wang, Lawrence D. Rotter, Johannes D. de Veer
  • Publication number: 20100328670
    Abstract: A device and methods for performing a photothermal measurement and relaxation compensation of a sample are disclosed. The device may include a probe beam source, a pump beam source, a sample, and a detector array. A method may include adjusting an intensity modulated pump beam power, adjusting a probe beam power to increase a response measurement location temperature and increase a modulated optical reflectance signal, directing the intensity modulated pump beam and the probe beam along a measurement path to a response measurement location on a sample for periodically exciting a region on the sample, detecting a reflected portion of the probe beam, and calculating an implantation dose.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 30, 2010
    Applicant: KLA-TENCOR TECHNOLOGIES CORPORATION
    Inventors: Lawrence D. Rotter, David Y. Wang, Derrick Shaughnessy, Mark Senko
  • Patent number: 7304735
    Abstract: An optical filter for the selective attenuation of specific wavelengths of light includes at least one spectrally dispersive element, such as a diffraction grating or prism, in combination with an optical filter. A dispersive element separates broadband light into a constituent wavelength spread in angle space. An optical filter, or filter array, can block and/or attenuate specific wavelengths or wavelength ranges of interest while the light is angularly dispersed. A second dispersive element can recombine this filtered, separated wavelength fan of light into a coaxial broadband beam having a smoother intensity profile than the unfiltered beam.
    Type: Grant
    Filed: April 1, 2005
    Date of Patent: December 4, 2007
    Assignee: KLA-Tencor Technologies
    Inventors: David Y. Wang, James L. Hendrix, Adam E. Norton
  • Patent number: 7227637
    Abstract: The subject invention relates to a broadband optical metrology system that segregates the broadband radiation into multiple sub-bands to improve overall performance. Each sub-band includes only a fraction of the original bandwidth. The optical path—the light path that connects the illuminator, the sample and the detector—of each sub-band includes a unique sub-band optical system designed to optimize the performance over the spectral range spanned by the sub-band radiation. All of the sub-band optical systems are arranged to provide small-spot illumination at the same measurement position. Optional purging of the individual sub-band optical paths further improves performance.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: June 5, 2007
    Assignee: Therma-Wave, Inc.
    Inventors: David Y. Wang, Lawrence Rotter, Jeffrey T. Fanton, Jeffrey E. McAninch
  • Patent number: 7206125
    Abstract: An infrared filter for an optical metrology tool includes a substrate having film stacks on opposing surfaces thereof. A first film stack can be used to reflect ultra-violet radiation and transmit radiation at non-ultraviolet wavelengths. The second film stack can be used to reflect visible to near-infrared radiation and transmit infrared radiation. The combination of film stacks can therefore extract infrared radiation from a broadband beam, with the remaining ultra-violet radiation and visible to near-infrared radiation forming the product of the filter. The filter can be used as part of the illumination or collection side optics in a broadband optical metrology tool.
    Type: Grant
    Filed: October 21, 2004
    Date of Patent: April 17, 2007
    Assignee: Therma-Wave, Inc.
    Inventor: David Y Wang