Patents by Inventor Deep Arjun Singh

Deep Arjun Singh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210016068
    Abstract: Systems and methods are provided herein that generally involve shunting fluid, e.g., shunting cerebrospinal fluid in the treatment of hydrocephalus. Self-cleaning catheters are provided which include split tips configured such that pulsatile flow of fluid in a cavity in which the catheter is inserted can cause the tips to strike one another and thereby clear obstructions. Catheters with built-in flow indicators are also provided. Exemplary flow indicators include projections that extend radially inward from the interior surface of the catheter and which include imageable portions (e.g., portions which are visible under magnetic resonance imaging (MRI)). Movement of the flow indicators caused by fluid flowing through the catheter can be detected using MRI, thereby providing a reliable indication as to whether the catheter is partially or completely blocked.
    Type: Application
    Filed: May 4, 2020
    Publication date: January 21, 2021
    Inventors: PJ Anand, Deep Arjun Singh, Morgan Brophy, Timothy Fallon, Robert Degon, Matthew Attar, Anthony Wong, Allison Waller, Andrew East, Jon T. McIntyre
  • Patent number: 10828424
    Abstract: Automated drug delivery systems and related methods are disclosed herein. In some embodiments, these systems can reduce or eliminate infusion inconsistencies. An exemplary system can include a syringe actuator which can be controlled via electrical, mechanical, pneumatic, and/or hydraulic means to precisely infuse and/or withdraw material from a patient.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: November 10, 2020
    Assignee: ALCYONE LIFESCIENCES, INC.
    Inventors: PJ Anand, Ayesha Arzumand, Morgan Brophy, Andrew East, Gregory Eberl, Deep Arjun Singh
  • Patent number: 10806396
    Abstract: Systems and methods for delivering a drug with a tracer or contrast agent are disclosed herein, as are systems and methods that generally involve CED devices with various features for reducing or preventing backflow. In some embodiments, CED devices include a tissue-receiving space disposed proximal to a distal fluid outlet. Tissue can be compressed into or pinched/pinned by the tissue-receiving space as the device is inserted into a target region of a patient, thereby forming a seal that reduces or prevents proximal backflow of fluid ejected from the outlet beyond the tissue-receiving space. In some embodiments, CED devices include a bullet-shaped nose proximal to a distal fluid outlet. The bullet-shaped nose forms a good seal with surrounding tissue and helps reduce or prevent backflow of infused fluid.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: October 20, 2020
    Assignee: Alcyone Lifesciences, Inc.
    Inventors: Deep Arjun Singh, PJ Anand, Martin Lee Brady
  • Patent number: 10792480
    Abstract: Systems and methods for flushing shunt systems are disclosed herein. In some embodiments, a flusher includes a pinch tube that extends over a flush dome such that a user can simultaneously close the pinch tube and actuate the flush dome with a single motion. Flushing and refill valves of the system can be disposed in a cartridge that is laterally-offset from the flush dome, advantageously reducing the height profile of the flusher. Flushers with integrated shunt valves are also disclosed, as are shunt systems with restricted and unrestricted modes for selectively limiting the instances in which a user can open an auxiliary flow path through the system.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: October 6, 2020
    Assignee: Anuncia, Inc.
    Inventors: P J Anand, Deep Arjun Singh, Greg Eberl, Andrew East, Morgan Brophy, Ayesha Arzumand, Stela Moura, Loredana Guseila
  • Publication number: 20200297966
    Abstract: A therapy specific, pre-programmed, hand-held auto-injection device for delivering a drug to a patient includes a housing, a plurality of syringes carried by the housing, at least one actuator disposed within the housing coupled to the plurality of syringes, and a controller disposed within the housing and communicatively coupled to the at least one actuator. The controller is configured to receive an infusion and aspiration profile, which includes an infusion and aspiration protocol for controlling at least one of the plurality of syringes. The controller is also configured to operate the at least one actuator based on the infusion and aspiration protocol by either expelling a fluid from a respective barrel of the plurality of syringes into the infusion and aspiration location or drawing a fluid from the infusion and aspiration location into a respectively barrel of the plurality of syringes.
    Type: Application
    Filed: June 8, 2020
    Publication date: September 24, 2020
    Inventors: PJ Anand, Deep Arjun Singh, Jonathan Freund, Katelyn Perkins-Neaton, Thomas T. Washburn
  • Publication number: 20200275948
    Abstract: Drug delivery systems and methods are disclosed herein. In some embodiments, a drug delivery system can be configured to deliver a drug to a patient in coordination with a physiological parameter of the patient (e.g., the patient's natural cerebrospinal fluid (CSF) pulsation or the patient's heart or respiration rate). In some embodiments, a drug delivery system can be configured to use a combination of infusion and aspiration to control delivery of a drug to a patient. Catheters, controllers, and other components for use in the above systems are also disclosed, as are various methods of using such systems.
    Type: Application
    Filed: May 18, 2020
    Publication date: September 3, 2020
    Inventors: PJ Anand, Morgan Brophy, Deep Arjun Singh, Greg Eberl, Ayesha Arzumand, Stela Moura
  • Publication number: 20200254222
    Abstract: Fixation devices are disclosed herein that can be used to secure to a catheter. The fixation devices include a body having a central bore extending therethrough to receive a catheter and at least one end having a tapered profile tapering inwardly a distal edge thereof. The body can include an expanded intermediate portion, such as one or more bulbous portions. The fixation devices can also include suture openings or grooves to secure the devices to tissue.
    Type: Application
    Filed: February 11, 2020
    Publication date: August 13, 2020
    Inventors: PJ Anand, Deep Arjun Singh, Andrew East, Thomas T. Washburn, Rahul Veetekat, Nicole Bettè, Chris Fleege, Matthew J. Lapinski, Burt Raymond
  • Publication number: 20200214726
    Abstract: Methods and devices are disclosed herein that allow for infusion and aspiration through a single device. The device can be used to treat a stroke by delivering the device to the site of a blood clot and simultaneously or sequentially infusing a thrombolytic or other drug into the clot and aspirating the dissolving clot from the patient. The methods and devices can advantageously permit more efficient thrombolytic infusion and clot aspiration. Modular systems are also disclosed, as are methods of treating subdural hematoma or other conditions.
    Type: Application
    Filed: January 13, 2020
    Publication date: July 9, 2020
    Inventors: PJ Anand, John Ekholm, Deep Arjun Singh
  • Publication number: 20200197676
    Abstract: Systems and methods are provided herein that generally involve shunting fluid, e.g., shunting cerebrospinal fluid in the treatment of hydrocephalus. Self-cleaning catheters are provided which include split tips configured such that pulsatile flow of fluid in a cavity in which the catheter is inserted can cause the tips to strike one another and thereby clear obstructions. Catheters with built-in flow indicators are also provided. Exemplary flow indicators include projections that extend radially inward from the interior surface of the catheter and which include imagable portions (e.g., portions which are visible under magnetic resonance imaging (MRI)). Movement of the flow indicators caused by fluid flowing through the catheter can be detected using MRI, thereby providing a reliable indication as to whether the catheter is partially or completely blocked.
    Type: Application
    Filed: November 21, 2019
    Publication date: June 25, 2020
    Inventors: Andrew East, Morgan Brophy, Deep Arjun Singh, PJ Anand, Robert Degon, Timothy Fallon, Allison Waller, Matthew Attar
  • Patent number: 10675438
    Abstract: A therapy specific, pre-programmed, hand-held auto-injection device for delivering a drug to a patient includes a housing, a plurality of syringes carried by the housing, at least one actuator disposed within the housing coupled to the plurality of syringes, and a controller disposed within the housing and communicatively coupled to the at least one actuator. The controller is configured to receive an infusion and aspiration profile, which includes an infusion and aspiration protocol for controlling at least one of the plurality of syringes. The controller is also configured to operate the at least one actuator based on the infusion and aspiration protocol by either expelling a fluid from a respective barrel of the plurality of syringes into the infusion and aspiration location or drawing a fluid from the infusion and aspiration location into a respectively barrel of the plurality of syringes.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: June 9, 2020
    Assignee: ALCYONE LIFESCIENCES, INC.
    Inventors: PJ Anand, Deep Arjun Singh, Jonathan Freund, Katelyn Perkins-Neaton, Thomas T. Washburn
  • Patent number: 10668247
    Abstract: A method of delivering a drug to a patient using a therapy specific, pre-programmed auto-injection device includes positioning the hand-held device proximate to an infusion and aspiration location of the patient, and receiving, at a controller disposed within the housing, an infusion and aspiration profile. The infusion and aspiration profile including an infusion and aspiration protocol for controlling at least one of a plurality of syringes partially disposed within the housing. The method also includes operating at least one actuator coupled to the plurality of syringes according to the infusion and aspiration protocol, causing the syringes to expel a fluid from a respective barrel of the plurality of syringe into the infusion and aspiration location or causing the syringes to draw a fluid from the infusion and aspiration location into a respective barrel of the plurality of syringes.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: June 2, 2020
    Assignee: ALCYONE LIFESCIENCES, INC.
    Inventors: PJ Anand, Deep Arjun Singh, Jonathan Freund, Katelyn Perkins-Neaton, Thomas T. Washburn
  • Patent number: 10653442
    Abstract: Drug delivery systems and methods are disclosed herein. In some embodiments, a drug delivery system can be configured to deliver a drug to a patient in coordination with a physiological parameter of the patient (e.g., the patient's natural cerebrospinal fluid (CSF) pulsation or the patient's heart or respiration rate). In some embodiments, a drug delivery system can be configured to use a combination of infusion and aspiration to control delivery of a drug to a patient. Catheters, controllers, and other components for use in the above systems are also disclosed, as are various methods of using such systems.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: May 19, 2020
    Assignee: ALCYONE LIFESCIENCES, INC.
    Inventors: PJ Anand, Morgan Brophy, Deep Arjun Singh, Greg Eberl, Ayesha Arzumand, Stela Moura
  • Patent number: 10639461
    Abstract: Systems and methods are provided herein that generally involve shunting fluid, e.g., shunting cerebrospinal fluid in the treatment of hydrocephalus. Self-cleaning catheters are provided which include split tips configured such that pulsatile flow of fluid in a cavity in which the catheter is inserted can cause the tips to strike one another and thereby clear obstructions. Catheters with built-in flow indicators are also provided. Exemplary flow indicators include projections that extend radially inward from the interior surface of the catheter and which include imageable portions (e.g., portions which are visible under magnetic resonance imaging (MRI)). Movement of the flow indicators caused by fluid flowing through the catheter can be detected using MRI, thereby providing a reliable indication as to whether the catheter is partially or completely blocked.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: May 5, 2020
    Assignee: Anuncia, Inc.
    Inventors: P J Anand, Deep Arjun Singh, Morgan Brophy, Timothy Fallon, Robert Degon, Matthew Attar, Anthony Wong, Allison Waller, Andrew East, Jon T. McIntyre
  • Publication number: 20200101239
    Abstract: Methods and devices are disclosed herein that generally provide protection for devices (e.g., microcatheters) having small tips. Methods and devices are also disclosed herein that generally facilitate use of commercially-available stereotactic systems with devices (e.g., microcatheters) having small tips.
    Type: Application
    Filed: October 1, 2019
    Publication date: April 2, 2020
    Inventors: Deep Arjun Singh, PJ Anand
  • Publication number: 20200101275
    Abstract: Systems and methods for delivering a drug or other therapy over an extended period of time (e.g., several hours, days, weeks, months, years, and so forth) are disclosed herein, as are systems and methods for monitoring various parameters associated with the treatment of a patient. Systems and methods are also disclosed herein that generally involve CED devices with various features for reducing or preventing backflow.
    Type: Application
    Filed: September 13, 2019
    Publication date: April 2, 2020
    Applicant: Alcyone Lifesciences, Inc.
    Inventors: Deep Arjun Singh, PJ Anand, Andrew East
  • Publication number: 20200061362
    Abstract: Fluid delivery systems and methods of delivering a therapeutic agent are disclosed that include a subcutaneously implantable port that can be easily and efficiently located through the tissue of a patient. The port includes a body that defines a chamber having an open top, a delivery opening, and a catheter connection portion, and a septum disposed on the body, where the septum includes a lower surface extending over the open top of the chamber and an opposite, upper surface. The port further includes a cap of the port that defines an opening extending therethrough and the cap is configured to be coupled to the body to secure the septum within the port with the opening of the cap providing needle access to the septum. The cap includes a downwardly tapered surface that extends around the opening and is configured to direct a needle towards the upper surface of the septum.
    Type: Application
    Filed: August 27, 2018
    Publication date: February 27, 2020
    Inventors: Deep Arjun Singh, Jonathan Freund, PJ Anand, Thomas T. Washburn, Andrew William East, Elsa Chi Abruzzo
  • Publication number: 20200061337
    Abstract: Fluid delivery systems and methods of delivering an agent and treating a disorder are disclosed that include a subcutaneously implantable port having a body defining a chamber with an open top and a delivery opening and a septum coupled to the body to extend over the open top of the chamber. The systems and methods can further include an intrathecal catheter having an proximal end configured to be coupled to the port and fluidly coupled to the delivery opening of the chamber and a plug having a body with a passage to receive the intrathecal catheter therethrough. The plug can be configured to be inserted into the fascia to protect against leakage of cerebrospinal fluid.
    Type: Application
    Filed: August 27, 2018
    Publication date: February 27, 2020
    Inventors: Deep Arjun Singh, Jonathan Freund, PJ Anand, Thomas T. Washburn, Andrew William East, Elsa Chi Abruzzo
  • Patent number: 10531882
    Abstract: Methods and devices are disclosed herein that allow for infusion and aspiration through a single device. The device can be used to treat a stroke by delivering the device to the site of a blood clot and simultaneously or sequentially infusing a thrombolytic or other drug into the clot and aspirating the dissolving clot from the patient. The methods and devices can advantageously permit more efficient thrombolytic infusion and clot aspiration. Modular systems are also disclosed, as are methods of treating subdural hematoma or other conditions.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: January 14, 2020
    Assignee: Alcyone Lifesciences, Inc.
    Inventors: P J Anand, John Ekholm, Deep Arjun Singh
  • Publication number: 20190374715
    Abstract: Drug delivery systems and methods are disclosed herein. In some embodiments, a drug delivery system can be configured to deliver a drug to a patient in coordination with a physiological parameter of the patient (e.g., the patient's natural cerebrospinal fluid (CSF) pulsation or the patient's heart or respiration rate). In some embodiments, a drug delivery system can be configured to use a combination of infusion and aspiration to control delivery of a drug to a patient. Catheters, controllers, and other components for use in the above systems are also disclosed, as are various methods of using such systems.
    Type: Application
    Filed: August 21, 2019
    Publication date: December 12, 2019
    Inventors: PJ Anand, Morgan Brophy, Deep Arjun Singh, Greg Eberl
  • Patent number: 10493249
    Abstract: Systems and methods are provided herein that generally involve shunting fluid, e.g., shunting cerebrospinal fluid in the treatment of hydrocephalus. Self-cleaning catheters are provided which include split tips configured such that pulsatile flow of fluid in a cavity in which the catheter is inserted can cause the tips to strike one another and thereby clear obstructions. Catheters with built-in flow indicators are also provided. Exemplary flow indicators include projections that extend radially inward from the interior surface of the catheter and which include imageable portions (e.g., portions which are visible under magnetic resonance imaging (MRI)). Movement of the flow indicators caused by fluid flowing through the catheter can be detected using MRI, thereby providing a reliable indication as to whether the catheter is partially or completely blocked.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: December 3, 2019
    Assignee: Anuncia, Inc.
    Inventors: Andrew East, Morgan Brophy, Deep Arjun Singh, PJ Anand, Robert Degon, Timothy Fallon, Allison Waller, Matthew Attar