Patents by Inventor Dennis M. Hausmann

Dennis M. Hausmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10454029
    Abstract: Methods and apparatuses for forming conformal, low wet etch rate silicon nitride films having low hydrogen content using atomic layer deposition are described herein. Methods involve depositing a silicon nitride film at a first temperature using a bromine-containing and/or iodine-containing silicon precursor and nitrogen by atomic layer deposition and treating the silicon nitride film using a plasma at a temperature less than about 100° C. Methods and apparatuses are suitable for forming conformal, dense, low wet etch rate silicon nitride films as encapsulation layers over chalcogenide materials for memory applications.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: October 22, 2019
    Assignee: Lam Research Corporation
    Inventors: Andrew John McKerrow, Dennis M. Hausmann
  • Publication number: 20190311897
    Abstract: Provided herein are methods and apparatus for filling one or more gaps on a semiconductor substrate. The disclosed embodiments are especially useful for forming seam-free, void-free fill in both narrow and wide features. The methods may be performed without any intervening etching operations to achieve a single step deposition. In various implementations, a first operation is performed using a novel PEALD fill mechanism to fill narrow gaps and line wide gaps. A second operation may be performed using PECVD methods to continue filling the wide gaps.
    Type: Application
    Filed: May 31, 2019
    Publication date: October 10, 2019
    Inventors: Hu Kang, Shankar Swaminathan, Jun Qian, Wanki Kim, Dennis M. Hausmann, Bart J. van Schravendijk, Adrien LaVoie
  • Patent number: 10373840
    Abstract: Various embodiments herein relate to methods, apparatus and systems for forming a recessed feature in dielectric material on a semiconductor substrate. Separate etching and deposition operations are employed in a cyclic manner. Each etching operation partially etches the feature. Each deposition operation forms a protective coating on the sidewalls of the feature to prevent lateral etch of the dielectric material during the etching operations. The protective coating may be deposited using methods that result in formation of the protective coating along substantially the entire length of the sidewalls. The protective coating may be deposited using particular reactants and/or reaction mechanisms that result in substantially complete sidewall coating at relatively low temperatures without the use of plasma. In some cases the protective coating is deposited using molecular layer deposition techniques.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: August 6, 2019
    Assignee: Lam Research Corporation
    Inventors: Eric A. Hudson, Dennis M. Hausmann, Joseph Scott Briggs
  • Publication number: 20190203354
    Abstract: Methods and systems for conformality modulation of metal oxide films in atomic layer deposition (ALD) are provided. Some example methods use chemical inhibition. An example system for performing such a method comprises a chamber; a source of precursor gas; a source of inhibiting precursor gas; one or more injectors having respective gas flow paths, each having an inlet connectable to the source of the precursor or the inhibiting precursor gas, and being adapted to deliver into the chamber, separately or in conjunction with another injector, precursor gas at a first gaseous flow rate in a first region of the plurality of regions to form a first film at a first deposition rate, and being adapted to deliver inhibiting precursor gas at a second gaseous flow rate in the same or a second region of the plurality of regions to inhibit growth of the first film.
    Type: Application
    Filed: April 25, 2018
    Publication date: July 4, 2019
    Inventors: David C. Smith, Dennis M. Hausmann
  • Publication number: 20190157076
    Abstract: Methods and apparatuses for selectively depositing silicon oxide on dielectric surfaces relative to a metal-containing surface such as copper are provided. Methods involve exposing a substrate having dielectric and copper surfaces to a copper-blocking reagent such as an alkyl thiol to selectively adsorb to the copper surface, exposing the substrate to a silicon-containing precursor for depositing silicon oxide, exposing the substrate to a weak oxidant gas and igniting a plasma to convert the adsorb silicon-containing precursor to form silicon oxide, and exposing the substrate to a reducing agent to reduce any oxidized copper from exposure to the weak oxidant gas.
    Type: Application
    Filed: November 22, 2017
    Publication date: May 23, 2019
    Inventors: Dennis M. Hausmann, Alexander R. Fox, Colleen Lawlor
  • Publication number: 20190148128
    Abstract: Methods and apparatuses for selectively depositing silicon nitride on exposed surfaces of a substrate having hydroxyl end groups relative to exposed surfaces having S—H bonds are provided herein. Techniques involve providing a transition metal-containing reactant or a non-hydride aluminum-containing gas to the substrate to form a transition metal-containing or an aluminum-containing moiety on an exposed surface having hydroxyl end groups and selectively depositing silicon nitride on the surface using alternating pulses of an aminosilane and a hydrazine by thermal atomic layer deposition catalyzed by the transition metal-containing or aluminum-containing moiety on the exposed surface having hydroxyl end groups relative to an exposed surface having S—H bonds.
    Type: Application
    Filed: January 14, 2019
    Publication date: May 16, 2019
    Inventors: David Charles Smith, Dennis M. Hausmann
  • Publication number: 20190139778
    Abstract: Methods are provided for integrating atomic layer etch and atomic layer deposition by performing both processes in the same chamber or reactor. Methods involve sequentially alternating between atomic layer etch and atomic layer deposition processes to prevent feature degradation during etch, improve selectivity, and encapsulate sensitive layers of a semiconductor substrate.
    Type: Application
    Filed: December 14, 2018
    Publication date: May 9, 2019
    Inventors: Keren Jacobs Kanarik, Jeffrey Marks, Harmeet Singh, Samantha SiamHwa Tan, Alexander Kabansky, Wenbing Yang, Taeseung Kim, Dennis M. Hausmann, Thorsten Lill
  • Publication number: 20190131130
    Abstract: Methods of and apparatuses for processing a metal oxide film are provided. Methods involve (a) exposing the metal oxide film to a boron halide reactant and igniting a first plasma with a first bias power to modify a surface of the metal oxide film, and (b) exposing the modified surface of the metal oxide film to a second plasma at a second bias power and for a duration sufficient to remove the modified surface without sputtering. Methods also involve (c) selectively depositing a metal oxide material on the metal oxide film to fill crevices within the metal oxide film.
    Type: Application
    Filed: October 31, 2017
    Publication date: May 2, 2019
    Inventors: David Charles Smith, Richard Wise, Arpan Mahorowala, Dennis M. Hausmann
  • Publication number: 20190115207
    Abstract: Methods and apparatuses for selectively depositing silicon oxide on a silicon oxide surface relative to a silicon nitride surface are described herein. Methods involve pre-treating a substrate surface using ammonia and/or nitrogen plasma and selectively depositing silicon oxide on a silicon oxide surface using alternating pulses of an aminosilane silicon precursor and an oxidizing agent in a thermal atomic layer deposition reaction without depositing silicon oxide on an exposed silicon nitride surface.
    Type: Application
    Filed: November 30, 2018
    Publication date: April 18, 2019
    Inventors: David Charles Smith, Dennis M. Hausmann
  • Publication number: 20190094685
    Abstract: Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.
    Type: Application
    Filed: November 30, 2018
    Publication date: March 28, 2019
    Inventors: Jeffrey Marks, George Andrew Antonelli, Richard A. Gottscho, Dennis M. Hausmann, Adrien LaVoie, Thomas Joseph Knisley, Sirish K. Reddy, Bhadri N. Varadarajan, Artur Kolics
  • Patent number: 10242866
    Abstract: It will be understood that in some embodiments, nitrogen-containing ligands bonded to the silicon may not necessarily be identical to another nitrogen-containing ligand bonded to the same silicon atom. For example, in some embodiments, R1 and R2 may be different alkyl ligands. In some embodiments, a first NR1R2 ligand attached to a silicon atom may not be the same as or have the same alkyl ligands as another NR1R2 ligand attached to the same silicon atom. As noted above, R1 and R2 may be any alkyl ligand.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: March 26, 2019
    Assignee: Lam Research Corporation
    Inventors: David Charles Smith, Dennis M. Hausmann
  • Publication number: 20190057858
    Abstract: Provided are methods for the selective deposition of material on a sidewall surface of a patterned feature. In some embodiments, the methods involve providing a substrate having a feature recessed from a surface of the substrate. The feature has a bottom and a sidewall which extends from the bottom. A conformal film is deposited on the feature using an atomic layer deposition (ALD) process. The conformal film deposited on the bottom is modified by exposing the substrate to directional plasma such that the conformal film on the bottom is less dense than the conformal film on the sidewall. The modified conformal film deposited on the bottom of the feature is preferentially etched. Also provided are methods for the selective deposition on a horizontal surface of a patterned feature.
    Type: Application
    Filed: August 18, 2017
    Publication date: February 21, 2019
    Inventors: Dennis M. Hausmann, Alexander R. Fox, David Charles Smith, Bart J. van Schravendijk
  • Patent number: 10199212
    Abstract: Methods and apparatuses for selectively depositing silicon-containing dielectric or metal-containing dielectric material on silicon or metal surfaces selective to silicon oxide or silicon nitride materials are provided herein. Methods involve exposing the substrate to an acyl chloride which is reactive with the silicon oxide or silicon nitride material where deposition is not desired to form a ketone structure that blocks deposition on the silicon oxide or silicon nitride material. Exposure to the acyl chloride is performed prior to deposition of the desired silicon-containing dielectric material or metal-containing dielectric material.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: February 5, 2019
    Assignee: Lam Research Corporation
    Inventors: David Charles Smith, Dennis M. Hausmann
  • Patent number: 10186426
    Abstract: Methods are provided for integrating atomic layer etch and atomic layer deposition by performing both processes in the same chamber or reactor. Methods involve sequentially alternating between atomic layer etch and atomic layer deposition processes to prevent feature degradation during etch, improve selectivity, and encapsulate sensitive layers of a semiconductor substrate.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: January 22, 2019
    Assignee: Lam Research Corporation
    Inventors: Keren Jacobs Kanarik, Jeffrey Marks, Harmeet Singh, Samantha Tan, Alexander Kabansky, Wenbing Yang, Taeseung Kim, Dennis M. Hausmann, Thorsten Lill
  • Patent number: 10176984
    Abstract: Methods and apparatuses for selectively depositing silicon oxide on a silicon oxide surface relative to a silicon nitride surface are described herein. Methods involve pre-treating a substrate surface using ammonia and/or nitrogen plasma and selectively depositing silicon oxide on a silicon oxide surface using alternating pulses of an aminosilane silicon precursor and an oxidizing agent in a thermal atomic layer deposition reaction without depositing silicon oxide on an exposed silicon nitride surface.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: January 8, 2019
    Assignee: Lam Research Corporation
    Inventors: David Charles Smith, Dennis M. Hausmann
  • Patent number: 10141505
    Abstract: Methods of depositing silicon nitride encapsulation layers by atomic layer deposition over memory devices including chalcogenide material are provided herein. Methods include using iodine-containing and/or bromine-containing silicon precursors and depositing thermally using ammonia or hydrazine as a second reactant, or iodine-containing and/or bromine-containing silicon precursors and depositing using a nitrogen-based or hydrogen-based plasma.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: November 27, 2018
    Assignee: Lam Research Corporation
    Inventor: Dennis M. Hausmann
  • Publication number: 20180308680
    Abstract: Methods are provided for conducting a deposition on a semiconductor substrate by selectively depositing a material on the substrate. The substrate has a plurality of substrate materials, each with a different nucleation delay corresponding to the material deposited thereon. Specifically, the nucleation delay associated with a first substrate material on which deposition is intended is less than the nucleation delay associated with a second substrate material on which deposition is not intended according to a nucleation delay differential, which degrades as deposition proceeds. A portion of the deposited material is etched to reestablish the nucleation delay differential between the first and the second substrate materials. The material is further selectively deposited on the substrate.
    Type: Application
    Filed: April 28, 2017
    Publication date: October 25, 2018
    Inventors: Kapu Sirish Reddy, Meliha Gozde Rainville, Nagraj Shankar, Dennis M. Hausmann, David Charles Smith, Karthik Sivaramakrishnan, David W. Porter
  • Publication number: 20180269058
    Abstract: Methods and apparatuses for selectively depositing silicon nitride on silicon surfaces relative to silicon oxide surfaces and selectively depositing silicon nitride on silicon oxide surfaces relative to silicon surfaces are provided herein. Methods involve blocking one surface while leaving another surface unblocked and selectively depositing silicon nitride on the unblocked surface. The blocked surface may include an organic moiety having an Si—C bond. The method may include blocking one of an exposed hydroxyl-terminated silicon-containing surface and an exposed hydrogen-terminated silicon-containing surface of the substrate. Apparatuses include a process chamber having a pedestal, an outlet, and a controller for providing instructions for causing delivery of a semiconductor substrate to the pedestal, causing introduction of a silicon-containing precursor and causing introduction of a nitrogen-containing reactant without igniting a plasma.
    Type: Application
    Filed: January 23, 2018
    Publication date: September 20, 2018
    Inventors: David Charles Smith, Dennis M. Hausmann
  • Publication number: 20180261448
    Abstract: Methods and apparatuses for selectively depositing silicon-containing dielectric or metal-containing dielectric material on silicon or metal surfaces selective to silicon oxide or silicon nitride materials are provided herein. Methods involve exposing the substrate to an acyl chloride which is reactive with the silicon oxide or silicon nitride material where deposition is not desired to form a ketone structure that blocks deposition on the silicon oxide or silicon nitride material. Exposure to the acyl chloride is performed prior to deposition of the desired silicon-containing dielectric material or metal-containing dielectric material.
    Type: Application
    Filed: May 9, 2018
    Publication date: September 13, 2018
    Inventors: David Charles Smith, Dennis M. Hausmann
  • Publication number: 20180261447
    Abstract: It will be understood that in some embodiments, nitrogen-containing ligands bonded to the silicon may not necessarily be identical to another nitrogen-containing ligand bonded to the same silicon atom. For example, in some embodiments, R1 and R2 may be different alkyl ligands. In some embodiments, a first NR1R2 ligand attached to a silicon atom may not be the same as or have the same alkyl ligands as another NR1R2 ligand attached to the same silicon atom. As noted above, R1 and R2 may be any alkyl ligand.
    Type: Application
    Filed: March 8, 2017
    Publication date: September 13, 2018
    Inventors: David Charles Smith, Dennis M. Hausmann