Patents by Inventor Dennis M. Hausmann

Dennis M. Hausmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180233349
    Abstract: Methods and apparatuses for selectively depositing silicon oxide on a silicon oxide surface relative to a silicon nitride surface are described herein. Methods involve pre-treating a substrate surface using ammonia and/or nitrogen plasma and selectively depositing silicon oxide on a silicon oxide surface using alternating pulses of an aminosilane silicon precursor and an oxidizing agent in a thermal atomic layer deposition reaction without depositing silicon oxide on an exposed silicon nitride surface.
    Type: Application
    Filed: February 14, 2017
    Publication date: August 16, 2018
    Inventors: David Charles Smith, Dennis M. Hausmann
  • Patent number: 10043656
    Abstract: Methods and apparatuses for selectively depositing silicon-containing dielectric or metal-containing dielectric material on silicon or metal surfaces selective to silicon oxide or silicon nitride materials are provided herein. Methods involve exposing the substrate to an acyl chloride which is reactive with the silicon oxide or silicon nitride material where deposition is not desired to form a ketone structure that blocks deposition on the silicon oxide or silicon nitride material. Exposure to the acyl chloride is performed prior to deposition of the desired silicon-containing dielectric material or metal-containing dielectric material.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: August 7, 2018
    Assignee: Lam Research Corporation
    Inventors: David Charles Smith, Dennis M. Hausmann
  • Publication number: 20180197770
    Abstract: Aluminum oxide films characterized by a dielectric constant (k) of less than about 7 (such as between about 4-6) and having a density of at least about 2.5 g/cm3 (such as about 3.0-3.2 g/cm3) are deposited on partially fabricated semiconductor devices over both metal and dielectric to serve as etch stop layers. The films are deposited using a deposition method that does not lead to oxidative damage of the metal. The deposition involves reacting an aluminum-containing precursor (e.g., a trialkylaluminum) with an alcohol and/or aluminum alkoxide. In one implementation the method involves flowing trimethylaluminum to the process chamber housing a substrate having an exposed metal and dielectric layers; purging and/or evacuating the process chamber; flowing t-butanol to the process chamber and allowing it to react with trimethylaluminum to form an aluminum oxide film and repeating the process steps until the film of desired thickness is formed.
    Type: Application
    Filed: November 22, 2017
    Publication date: July 12, 2018
    Inventors: Meliha Gozde Rainville, Nagraj Shankar, Kapu Sirish Reddy, Dennis M. Hausmann
  • Patent number: 9996004
    Abstract: A vacuum-integrated metal oxide-containing hardmask formation process and related vacuum-integrated hardware that combine steps of film formation by vapor deposition and optical lithography results in direct photopatterning of metal oxide-containing hardmasks at substantially reduced cost relative to current approaches.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: June 12, 2018
    Assignee: LAM RESEARCH CORPORATION
    Inventors: David Smith, Dennis M. Hausmann
  • Publication number: 20180138405
    Abstract: Methods and apparatuses for forming conformal, low wet etch rate silicon nitride films having low hydrogen content using atomic layer deposition are described herein. Methods involve depositing a silicon nitride film at a first temperature using a bromine-containing and/or iodine-containing silicon precursor and nitrogen by atomic layer deposition and treating the silicon nitride film using a plasma at a temperature less than about 100° C. Methods and apparatuses are suitable for forming conformal, dense, low wet etch rate silicon nitride films as encapsulation layers over chalcogenide materials for memory applications.
    Type: Application
    Filed: November 11, 2016
    Publication date: May 17, 2018
    Inventors: Andrew John McKerrow, Dennis M. Hausmann
  • Publication number: 20180138028
    Abstract: Methods of selectively inhibiting deposition of silicon-containing films deposited by atomic layer deposition are provided. Selective inhibition involves exposure of an adsorbed layer of a silicon-containing precursor to a hydrogen-containing inhibitor, and in some instances, prior to exposure of the adsorbed layer to a second reactant. Exposure to a hydrogen-containing inhibitor may be performed with a plasma, and methods are suitable for selective inhibition in thermal or plasma enhanced atomic layer deposition of silicon-containing films.
    Type: Application
    Filed: December 19, 2017
    Publication date: May 17, 2018
    Inventors: Jon Henri, Dennis M. Hausmann, Bart J. van Schravendijk, Shane Tang, Karl F. Leeser
  • Publication number: 20180114903
    Abstract: Methods of depositing silicon nitride encapsulation layers by atomic layer deposition over memory devices including chalcogenide material are provided herein. Methods include using iodine-containing and/or bromine-containing silicon precursors and depositing thermally using ammonia or hydrazine as a second reactant, or iodine-containing and/or bromine-containing silicon precursors and depositing using a nitrogen-based or hydrogen-based plasma.
    Type: Application
    Filed: December 1, 2017
    Publication date: April 26, 2018
    Inventor: Dennis M. Hausmann
  • Patent number: 9911595
    Abstract: Methods and apparatuses for selectively depositing silicon nitride on silicon surfaces relative to silicon oxide surfaces and selectively depositing silicon nitride on silicon oxide surfaces relative to silicon surfaces are provided herein. Methods involve exposing the substrate to an alkene which is selectively reactive with the silicon surface to block the silicon surface by forming an organic moiety on the silicon surface prior to depositing silicon nitride selectively on silicon oxide surfaces using thermal atomic layer deposition. Methods involve exposing the substrate to an alkylsilylhalide which is selectively reactive with the silicon oxide surface to block the silicon oxide surface by forming an organic moiety on the silicon oxide surface prior to depositing silicon nitride selectively on silicon surfaces using thermal atomic layer deposition.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: March 6, 2018
    Assignee: Lam Research Corporation
    Inventors: David Charles Smith, Dennis M. Hausmann
  • Publication number: 20180033635
    Abstract: Methods are provided for integrating atomic layer etch and atomic layer deposition by performing both processes in the same chamber or reactor. Methods involve sequentially alternating between atomic layer etch and atomic layer deposition processes to prevent feature degradation during etch, improve selectivity, and encapsulate sensitive layers of a semiconductor substrate.
    Type: Application
    Filed: September 28, 2017
    Publication date: February 1, 2018
    Inventors: Keren Jacobs Kanarik, Jeffrey Marks, Harmeet Singh, Samantha Tan, Alexander Kabansky, Wenbing Yang, Taeseung Kim, Dennis M. Hausmann, Thorsten Lill
  • Patent number: 9873946
    Abstract: The present invention provides improved methods of preparing a low-k dielectric material on a substrate. The methods involve multiple operation ultraviolet curing processes in which UV intensity, wafer substrate temperature, UV spectral distribution, and other conditions may be independently modulated in each operation. Operations may be pulsed or even be concurrently applied to the same wafer. In certain embodiments, a film containing a structure former and a porogen is exposed to UV radiation in a first operation to facilitate removal of the porogen and create a porous dielectric film. In a second operation, the film is exposed to UV radiation to increase cross-linking within the porous film.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: January 23, 2018
    Assignee: Novellus Systems, Inc.
    Inventors: Jason Dirk Haverkamp, Dennis M. Hausmann, Kevin M. McLaughlin, Krishnan Shrinivasan, Michael Rivkin, Eugene Smargiassi, Mohamed Sabri
  • Patent number: 9875891
    Abstract: Methods of selectively inhibiting deposition of silicon-containing films deposited by atomic layer deposition are provided. Selective inhibition involves exposure of an adsorbed layer of a silicon-containing precursor to a hydrogen-containing inhibitor, and in some instances, prior to exposure of the adsorbed layer to a second reactant. Exposure to a hydrogen-containing inhibitor may be performed with a plasma, and methods are suitable for selective inhibition in thermal or plasma enhanced atomic layer deposition of silicon-containing films.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: January 23, 2018
    Assignee: Lam Research Corporation
    Inventors: Jon Henri, Dennis M. Hausmann, Bart J. van Schravendijk, Shane Tang, Karl F. Leeser
  • Patent number: 9865815
    Abstract: Methods of depositing silicon nitride encapsulation layers by atomic layer deposition over memory devices including chalcogenide material are provided herein. Methods include using iodine-containing and/or bromine-containing silicon precursors and depositing thermally using ammonia or hydrazine as a second reactant, or iodine-containing and/or bromine-containing silicon precursors and depositing using a nitrogen-based or hydrogen-based plasma.
    Type: Grant
    Filed: September 21, 2016
    Date of Patent: January 9, 2018
    Assignee: Lam Research Coporation
    Inventor: Dennis M. Hausmann
  • Publication number: 20180004083
    Abstract: Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.
    Type: Application
    Filed: August 30, 2017
    Publication date: January 4, 2018
    Inventors: Jeffrey Marks, George Andrew Antonelli, Richard A. Gottscho, Dennis M. Hausmann, Adrien LaVoie, Thomas Joseph Knisley, Sirish K. Reddy, Bhadri N. Varadarajan, Artur Kolics
  • Patent number: 9859153
    Abstract: Aluminum oxide films characterized by a dielectric constant (k) of less than about 7 (such as between about 4-6) and having a density of at least about 2.5 g/cm3 (such as about 3.0-3.2 g/cm3) are deposited on partially fabricated semiconductor devices over both metal and dielectric to serve as etch stop layers. The films are deposited using a deposition method that does not lead to oxidative damage of the metal. The deposition involves reacting an aluminum-containing precursor (e.g., a trialkylaluminum) with an alcohol and/or aluminum alkoxide. In one implementation the method involves flowing trimethylaluminum to the process chamber housing a substrate having an exposed metal and dielectric layers; purging and/or evacuating the process chamber; flowing t-butanol to the process chamber and allowing it to react with trimethylaluminum to form an aluminum oxide film and repeating the process steps until the film of desired thickness is formed.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: January 2, 2018
    Assignee: Lam Research Corporation
    Inventors: Meliha Gozde Rainville, Nagraj Shankar, Kapu Sirish Reddy, Dennis M. Hausmann
  • Patent number: 9805941
    Abstract: Methods are provided for integrating atomic layer etch and atomic layer deposition by performing both processes in the same chamber or reactor. Methods involve sequentially alternating between atomic layer etch and atomic layer deposition processes to prevent feature degradation during etch, improve selectivity, and encapsulate sensitive layers of a semiconductor substrate.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: October 31, 2017
    Assignee: Lam Research Corporation
    Inventors: Keren Jacobs Kanarik, Jeffrey Marks, Harmeet Singh, Samantha Tan, Alexander Kabansky, Wenbing Yang, Taeseung Kim, Dennis M. Hausmann, Thorsten Lill
  • Patent number: 9778561
    Abstract: Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: October 3, 2017
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Jeffrey Marks, George Andrew Antonelli, Richard A. Gottscho, Dennis M. Hausmann, Adrien LaVoie, Thomas Joseph Knisley, Sirish K. Reddy, Bhadri N. Varadarajan, Artur Kolics
  • Publication number: 20170146909
    Abstract: A vacuum-integrated metal oxide-containing hardmask formation process and related vacuum-integrated hardware that combine steps of film formation by vapor deposition and optical lithography results in direct photopatterning of metal oxide-containing hardmasks at substantially reduced cost relative to current approaches.
    Type: Application
    Filed: November 20, 2015
    Publication date: May 25, 2017
    Inventors: David Smith, Dennis M. Hausmann
  • Publication number: 20170117134
    Abstract: Methods of selectively inhibiting deposition of silicon-containing films deposited by atomic layer deposition are provided. Selective inhibition involves exposure of an adsorbed layer of a silicon-containing precursor to a hydrogen-containing inhibitor, and in some instances, prior to exposure of the adsorbed layer to a second reactant. Exposure to a hydrogen-containing inhibitor may be performed with a plasma, and methods are suitable for selective inhibition in thermal or plasma enhanced atomic layer deposition of silicon-containing films.
    Type: Application
    Filed: January 5, 2017
    Publication date: April 27, 2017
    Inventors: Jon Henri, Dennis M. Hausmann, Bart J. van Schravendijk, Shane Tang, Karl F. Leeser
  • Publication number: 20170117159
    Abstract: Methods are provided for integrating atomic layer etch and atomic layer deposition by performing both processes in the same chamber or reactor. Methods involve sequentially alternating between atomic layer etch and atomic layer deposition processes to prevent feature degradation during etch, improve selectivity, and encapsulate sensitive layers of a semiconductor substrate.
    Type: Application
    Filed: January 6, 2017
    Publication date: April 27, 2017
    Inventors: Keren Jacobs Kanarik, Jeffrey Marks, Harmeet Singh, Samantha Tan, Alexander Kabansky, Wenbing Yang, Taeseung Kim, Dennis M. Hausmann, Thorsten Lill
  • Publication number: 20170092856
    Abstract: Methods of depositing silicon nitride encapsulation layers by atomic layer deposition over memory devices including chalcogenide material are provided herein. Methods include using iodine-containing silicon precursors and depositing thermally using ammonia or hydrazine as a second reactant, or iodine-containing silicon precursors and depositing using a nitrogen-based or hydrogen-based plasma.
    Type: Application
    Filed: November 6, 2015
    Publication date: March 30, 2017
    Inventors: Jon Henri, Dennis M. Hausmann, Seshasayee Varadarajan, Bhadri N. Varadarajan