Patents by Inventor Deok-hyung Lee

Deok-hyung Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7652340
    Abstract: In a fin field effect transistor (FET), an active pattern protrudes in a vertical direction from a substrate and extends across the substrate in a first horizontal direction. A first silicon nitride pattern is formed on the active pattern, and a first oxide pattern and a second silicon nitride pattern are sequentially formed on the substrate and on a sidewall of a lower portion of the active pattern. A device isolation layer is formed on the second silicon nitride pattern, and a top surface of the device isolation layer is coplanar with top surfaces of the oxide pattern and the second silicon nitride pattern. A buffer pattern having an etching selectivity with respect to the second silicon nitride pattern is formed between the first oxide pattern and the second silicon nitride pattern.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: January 26, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Deok-Hyung Lee, Yu-Gyun Shin, Jong-Wook Lee, Min-Gu Kang
  • Patent number: 7642589
    Abstract: A field effect transistor includes a vertical fin-shaped semiconductor active region having an upper surface and a pair of opposing sidewalls on a substrate, and an insulated gate electrode on the upper surface and opposing sidewalls of the fin-shaped active region. The insulated gate electrode includes a capping gate insulation layer having a thickness sufficient to preclude formation of an inversion-layer channel along the upper surface of the fin-shaped active region when the transistor is disposed in a forward on-state mode of operation. Related fabrication methods are also discussed.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: January 5, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Hoon Son, Si-Young Choi, Byeong-Chan Lee, Deok-Hyung Lee, In-Soo Jung
  • Patent number: 7579249
    Abstract: Provided are a DRAM semiconductor device and a method for fabricating the DRAM semiconductor device. The method provides forming a silicon epitaxial layer on a source/drain region of a cell region and a peripheral circuit region using selective epitaxial growth (SEG), thereby forming a raised active region. In addition, in the DRAM semiconductor device, a metal silicide layer and a metal pad are formed on the silicon epitaxial layer in the source/drain region of the cell region. By doing this, the DRAM device is capable of forming a source/drain region as a shallow junction region, reducing the occurrence of leakage current and lowering the contact resistance with the source/drain region.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: August 25, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chul-sung Kim, Byeong-chan Lee, Jong-ryeol Yoo, Si-young Choi, Deok-hyung Lee
  • Publication number: 20090174001
    Abstract: Disclosed is a fin transistor and a planar transistor and a method of forming the same. The fin transistor and the planar transistor are formed to have gate electrodes with similar thicknesses by selectively recessing a semiconductor substrate in a planar region where the planar transistor is formed.
    Type: Application
    Filed: February 2, 2009
    Publication date: July 9, 2009
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Deok-Hyung LEE, Yu-Gyun SHIN, Jong-Wook LEE, Min-Gu KANG
  • Patent number: 7535061
    Abstract: Fin-Field Effect Transistors (Fin-FETs) are provided. A fin is provided on an integrated circuit substrate. The fin defines a trench on the integrated circuit substrate. A first insulation layer is provided in the trench such that a surface of the first insulation layer is recessed beneath a surface of the fin exposing sidewalls of the fin. A protection layer is provided on the first insulation layer and a second insulation layer is provided on the protection layer in the trench such that protection layer is between the second insulation layer and the sidewalls of the fin.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: May 19, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Deok-Hyung Lee, Si-Young Choi, Byeong-Chan Lee, In-Soo Jung, Jin-Hwa Heo
  • Patent number: 7534686
    Abstract: Disclosed is a semiconductor fin construction useful in FinFET devices that incorporates an upper region and a lower region with wherein the upper region is formed with substantially vertical sidewalls and the lower region is formed with inclined sidewalls to produce a wider base portion. The disclosed semiconductor fin construction will also typically include a horizontal step region at the interface between the upper region and the lower region. Also disclosed are a series of methods of manufacturing semiconductor devices incorporating semiconductor fins having this dual construction and incorporating various combinations of insulating materials such as silicon dioxide and/or silicon nitride for forming shallow trench isolation (STI) structures between adjacent semiconductor fins.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: May 19, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Deok Hyung Lee, Byeong Chan Lee, In Soo Jung, Yong Hoon Son, Siyoung Choi, Taek Jung Kim
  • Publication number: 20090121268
    Abstract: A semiconductor memory device may include a semiconductor substrate with an active region extending in a first direction parallel with respect to a surface of the semiconductor substrate. A pillar may extend from the active region in a direction perpendicular with respect to the surface of the semiconductor substrate with the pillar including a channel region on a sidewall thereof. A gate insulating layer may surround a sidewall of the pillar, and a word line may extend in a second direction parallel with respect to the surface of the semiconductor substrate. Moreover, the first and second directions may be different, and the word line may surround the sidewall of the pillar so that the gate insulating layer is between the word line and the pillar. A contact plug may be electrically connected to the active region and spaced apart from the word line, and a bit line may be electrically connected to the active region through the contact plug with the plurality of bit lines extending in the first direction.
    Type: Application
    Filed: August 26, 2008
    Publication date: May 14, 2009
    Inventors: Deok-hyung Lee, Sun-ghil Lee, Si-young Choi, Byeong-chan Lee, Seung-hun Lee
  • Patent number: 7521301
    Abstract: Integrated circuit field effect transistors include an integrated circuit substrate and a fin that projects away from the integrated circuit substrate, extends along the integrated circuit substrate, and includes a top that is remote from the integrated circuit substrate. A channel region is provided in the fin that is doped a conductivity type and has a higher doping concentration of the conductivity type adjacent the top than remote from the top. A source region and a drain region are provided in the fin on opposite sides of the channel region, and an insulated gate electrode extends across the fin adjacent the channel region. Related fabrication methods also are described.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: April 21, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Deok-Hyung Lee, Byeong-Chan Lee, Si-Young Choi, Taek-Jung Kim, Yong-Hoon Son, In-Soo Jung
  • Patent number: 7511340
    Abstract: Semiconductor devices have gate structures on a semiconductor substrate with first spacers on sidewalls of the respective gate structures. First contact pads are positioned between the gate structures and have heights lower than the heights of the gate structures. Second spacers are disposed on sidewalls of the first spacers and on exposed sidewalls of the first contact pads. Second contact pads are disposed on the first contact pads.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: March 31, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Deok-Hyung Lee, Si-Young Choi, Byeong-Chan Lee, Chul-Sung Kim, In-Soo Jung, Jong-Ryeol Yoo
  • Patent number: 7501674
    Abstract: Disclosed is a fin transistor and a planar transistor and a method of forming the same. The fin transistor and the planar transistor are formed to have gate electrodes with similar thicknesses by selectively recessing a semiconductor substrate in a planar region where the planar transistor is formed.
    Type: Grant
    Filed: October 6, 2005
    Date of Patent: March 10, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Deok-Hyung Lee, Yu-Gyun Shin, Jong-Wook Lee, Min-Gu Kang
  • Patent number: 7494877
    Abstract: A method of forming a semiconductor device may include forming a fin structure extending from a substrate. The fin structure may include first and second source/drain regions and a channel region therebetween, and the first and second source/drain regions may extend a greater distance from the substrate than the channel region. A gate insulating layer may be formed on the channel region, and a gate electrode may be formed on the gate insulating layer so that the gate insulating layer is between the gate electrode and the channel region. Related devices are also discussed.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: February 24, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Deok-Hyung Lee, Si-Young Choi, Byeong-Chan Lee, Yong-Hoon Son, In-Soo Jung
  • Patent number: 7442596
    Abstract: A fin type field effect transistor includes a semiconductor substrate, an active fin, a first hard mask layer pattern, a gate insulation layer pattern, a first conductive layer pattern, and source/drain regions. The active fin includes a semiconductor material and is formed on the substrate and extends in a direction away from a major surface of the substrate. The first hard mask layer pattern is formed on a distal surface of the active fin from the substrate. The gate insulation layer is formed on a sidewall portion of the active fin. The first conductive layer pattern includes a metal silicide and is formed on surfaces of the substrate and the gate insulation layer pattern, and on a sidewall of the first hard mask pattern. The source/drain regions are formed in the active fin on opposite sides of the first conductive layer pattern.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: October 28, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Wook Lee, Deok-Hyung Lee, Min-Gu Kang, Yu-Gyun Shin
  • Publication number: 20080188057
    Abstract: A trench isolation type semiconductor device in which a recess is prevented from being formed in a field region and a method of fabricating the same are provided. The trench isolation type semiconductor device includes a semiconductor substrate defined by an active region and a field region, a trench formed in the field region, an oxide layer conformally formed along the inside of the trench, a liner layer conformally formed along the oxide layer, a field insulating layer formed inside the trench including the oxide layer and the liner layer, and a field protection layer formed on the field insulating layer so that a step difference does not occur on the semiconductor substrate.
    Type: Application
    Filed: February 21, 2008
    Publication date: August 7, 2008
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Ki-Seog Youn, Jong-Hyon Ahn, Deok-Hyung Lee, Sung-Gun Kang, Kong-Soo Cheong
  • Patent number: 7393700
    Abstract: Methods of etching a semiconductor substrate may include providing a first gas that is chemically reactive with respect to the semiconductor substrate, and while providing the first gas, providing a second gas different than the first gas. More particularly, a molecule of the second gas may include a hydrogen atom, and the second gas may lower a temperature at which the first gas chemically reacts with the semiconductor substrate. The mixture of the first and second gases may be provided adjacent the semiconductor substrate to etch the semiconductor substrate.
    Type: Grant
    Filed: August 22, 2005
    Date of Patent: July 1, 2008
    Assignee: Samsung Electronic Co., Ltd.
    Inventors: Sun-Ghil Lee, Yu-Gyun Shin, Jong-Wook Lee, Deok-Hyung Lee, In-Soo Jung, Young-Eun Lee
  • Patent number: 7394117
    Abstract: A method of forming a fin field effect transistor on a semiconductor substrate includes forming an active region in the substrate, forming an epitaxial layer on the active region, and removing a portion of the epitaxial layer to form a vertical fin on the active region. The fin has a width that is narrower than a width of the active region. Removing a portion of the epitaxial layer may include oxidizing a surface of the epitaxial layer and then removing the oxidized surface of the epitaxial layer to decrease the width of the fin. The epitaxial layer may be doped in situ before removing a portion of the epitaxial layer. The method further includes forming a conductive layer on a top surface and on sidewalls of the fin. Related transistors are also discussed.
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: July 1, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: In-Soo Jung, Deok-Hyung Lee, Si-Young Choi, Byeong-Chan Lee, Yong-Hoon Son
  • Publication number: 20080135888
    Abstract: A FinFET may include a semiconductor fin having a top surface and a sidewall having different crystal planes. A gate dielectric layer on the top surface and on the sidewall has different thicknesses. A gate electrode is formed on the gate dielectric layer across the top surface and sidewall of the semiconductor fin.
    Type: Application
    Filed: December 7, 2007
    Publication date: June 12, 2008
    Inventors: Deok-Hyung Lee, Sun-Ghil Lee, Jong-Ryeol Yoo, Si-Young Choi
  • Patent number: 7385237
    Abstract: Fin FET semiconductor devices are provided which include a substrate, an active pattern that protrudes vertically from the substrate and that extends laterally in a first direction, a device isolation layer which has a top surface that is lower than a top surface of the active pattern, a gate structure on the substrate that extends laterally in a second direction to cover a portion of the active pattern and a conductive layer that is on at least portions of side surfaces of the active pattern that are adjacent a side portion of the gate structure. The conductive layer may comprise a semiconductor layer, and the semiconductor layer may be in electrical contact with a contact pad. In other embodiments, the conductive layer may comprise a contact pad.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: June 10, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Deok-Hyung Lee, In-Deog Bae, Byeong-Chan Lee, Jong-Wook Lee
  • Publication number: 20080093674
    Abstract: In a fin field effect transistor (FET), an active pattern protrudes in a vertical direction from a substrate and extends across the substrate in a first horizontal direction. A first silicon nitride pattern is formed on the active pattern, and a first oxide pattern and a second silicon nitride pattern are sequentially formed on the substrate and on a sidewall of a lower portion of the active pattern. A device isolation layer is formed on the second silicon nitride pattern, and a top surface of the device isolation layer is coplanar with top surfaces of the oxide pattern and the second silicon nitride pattern. A buffer pattern having an etching selectivity with respect to the second silicon nitride pattern is formed between the first oxide pattern and the second silicon nitride pattern.
    Type: Application
    Filed: December 7, 2007
    Publication date: April 24, 2008
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Deok-Hyung Lee, Yu-Gyun Shin, Jong-Wook Lee, Min-Gu Kang
  • Patent number: 7358588
    Abstract: A trench isolation type semiconductor device in which a recess is prevented from being formed in a field region and a method of fabricating the same are provided. The trench isolation type semiconductor device includes a semiconductor substrate defined by an active region and a field region, a trench formed in the field region, an oxide layer conformally formed along the inside of the trench, a liner layer conformally formed along the oxide layer, a field insulating layer formed inside the trench including the oxide layer and the liner layer, and a field protection layer formed on the field insulating layer so that a step difference does not occur on the semiconductor substrate.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: April 15, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ki-seog Youn, Jong-hyon Ahn, Deok-hyung Lee, Sung-gun Kang, Kong-soo Cheong
  • Publication number: 20080083944
    Abstract: A NAND-type flash memory device including selection transistors is provided. The device includes first and second impurity regions formed in a semiconductor substrate, and first and second selection gate patterns disposed on the semiconductor substrate between the first and second impurity regions. The first and second selection gate patterns are disposed adjacent to the first and second impurity regions, respectively. A plurality of cell gate patterns are disposed between the first and second selection gate patterns. A first anti-punchthrough impurity region that surrounds the first impurity region is provided in the semiconductor substrate. The first anti-punchthrough impurity region overlaps with a first edge of the first selection gate pattern adjacent to the first impurity region. A second anti-punchthrough impurity region that surrounds the second impurity region is provided in the semiconductor substrate.
    Type: Application
    Filed: September 4, 2007
    Publication date: April 10, 2008
    Inventors: Gyoung-Ho Buh, Sun-Ghil Lee, Jong-Ryeol Yoo, Deok-Hyung Lee, Guk-Hyon Yon