Patents by Inventor Derek Jantz

Derek Jantz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180171357
    Abstract: Disclosed herein are viral vectors for use in recombinant molecular biology techniques. In particular, the present disclosure relates to self-limiting viral vectors comprising genes encoding site-specific endonucleases as well as recognition sequences for site-specific endonucleases such that expression of the endonuclease in a cell cleaves the viral vector and limits its persistence time. In some embodiments, the viral vectors disclosed herein also carry directives to delete, insert, or change a target sequence.
    Type: Application
    Filed: June 20, 2016
    Publication date: June 21, 2018
    Applicant: Precision BioSciences, Inc.
    Inventors: Derek Jantz, James Jefferson Smith, Michael G. Nicholson
  • Publication number: 20180163233
    Abstract: Methods of inserting genes into defined locations in the chromosomal DNA of cultured mammalian cell lines which are subject to gene amplification are disclosed. In particular, sequences of interest (e.g., genes encoding biotherapeutic proteins) are inserted proximal to selectable genes in amplifiable loci, and the transformed cells are subjected to selection to induce co-amplification of the selectable gene and the sequence of interest. The invention also relates to meganucleases, vectors and engineered cell lines necessary for performing the methods, to cell lines resulting from the application of the methods, and use of the cell lines to produce protein products of interest.
    Type: Application
    Filed: October 13, 2017
    Publication date: June 14, 2018
    Applicant: Precision BioSciences, Inc.
    Inventors: Derek Jantz, James Jefferson Smith, Michael G. Nicholson
  • Patent number: 9993502
    Abstract: Disclosed herein is a genetically-modified cell comprising in its genome a modified human T cell receptor alpha constant region gene, wherein the cell has reduced cell-surface expression of the endogenous T cell receptor. The present disclosure further relates to methods for producing such a genetically-modified cell, and to methods of using such a cell for treating a disease in a subject.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: June 12, 2018
    Assignee: Precision BioSciences, Inc.
    Inventors: Derek Jantz, James Jefferson Smith, Michael G. Nicholson, Daniel T. MacLeod, Jeyaraj Antony, Victor Bartsevich
  • Patent number: 9993501
    Abstract: Disclosed herein is a genetically-modified cell comprising in its genome a modified human T cell receptor alpha constant region gene, wherein the cell has reduced cell-surface expression of the endogenous T cell receptor. The present disclosure further relates to methods for producing such a genetically-modified cell, and to methods of using such a cell for treating a disease in a subject.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: June 12, 2018
    Assignee: Precision BioSciences, Inc.
    Inventors: Derek Jantz, James Jefferson Smith, Michael G. Nicholson, Daniel T. MacLeod, Jeyaraj Antony, Victor Bartsevich
  • Publication number: 20180140635
    Abstract: Disclosed herein is a genetically-modified cell comprising in its genome a modified human T cell receptor alpha constant region gene, wherein the cell has reduced cell-surface expression of the endogenous T cell receptor. The present disclosure further relates to methods for producing such a genetically-modified cell, and to methods of using such a cell for treating a disease in a subject.
    Type: Application
    Filed: January 8, 2018
    Publication date: May 24, 2018
    Applicant: Precision BioSciences, Inc.
    Inventors: Derek Jantz, James Jefferson Smith, Michael G. Nicholson, Daniel T. MacLeod, Jeyaraj Antony, Victor Bartsevich
  • Publication number: 20180133254
    Abstract: Disclosed herein is a genetically-modified cell comprising in its genome a modified human T cell receptor alpha constant region gene, wherein the cell has reduced cell-surface expression of the endogenous T cell receptor. The present disclosure further relates to methods for producing such a genetically-modified cell, and to methods of using such a cell for treating a disease in a subject.
    Type: Application
    Filed: January 8, 2018
    Publication date: May 17, 2018
    Applicant: Precision BioSciences, Inc.
    Inventors: Derek Jantz, James Jefferson Smith, Michael G. Nicholson, Daniel T. MacLeod, Jeyaraj Antony, Victor Bartsevich
  • Patent number: 9969975
    Abstract: Disclosed herein is a genetically-modified cell comprising in its genome a modified human T cell receptor alpha constant region gene, wherein the cell has reduced cell-surface expression of the endogenous T cell receptor. The present disclosure further relates to methods for producing such a genetically-modified cell, and to methods of using such a cell for treating a disease in a subject.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: May 15, 2018
    Assignee: Precision BioSciences, Inc.
    Inventors: Derek Jantz, James Jefferson Smith, Michael G. Nicholson, Daniel T. MacLeod, Jeyaraj Antony, Victor Bartsevich
  • Patent number: 9950011
    Abstract: Disclosed herein is a genetically-modified cell comprising in its genome a modified human T cell receptor alpha constant region gene, wherein the cell has reduced cell-surface expression of the endogenous T cell receptor. The present disclosure further relates to methods for producing such a genetically-modified cell, and to methods of using such a cell for treating a disease in a subject.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: April 24, 2018
    Assignee: Precision BioSciences, Inc.
    Inventors: Derek Jantz, James Jefferson Smith, Michael G. Nicholson, Daniel T. MacLeod, Jeyaraj Antony, Victor Bartsevich
  • Patent number: 9950010
    Abstract: Disclosed herein is a genetically-modified cell comprising in its genome a modified human T cell receptor alpha constant region gene, wherein the cell has reduced cell-surface expression of the endogenous T cell receptor. The present disclosure further relates to methods for producing such a genetically-modified cell, and to methods of using such a cell for treating a disease in a subject.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: April 24, 2018
    Assignee: Precision BioSciences, Inc.
    Inventors: Derek Jantz, James Jefferson Smith, Michael G. Nicholson, Daniel T. MacLeod, Jeyaraj Antony, Victor Bartsevich
  • Patent number: 9889161
    Abstract: Disclosed herein is a genetically-modified cell comprising in its genome a modified human T cell receptor alpha constant region gene, wherein the cell has reduced cell-surface expression of the endogenous T cell receptor. The present disclosure further relates to methods for producing such a genetically-modified cell, and to methods of using such a cell for treating a disease in a subject.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: February 13, 2018
    Assignee: Precision BioSciences, Inc.
    Inventors: Derek Jantz, James Jefferson Smith, Michael G. Nicholson, Daniel T. MacLeod, Victor Bartsevich, Jeyaraj Antony
  • Patent number: 9889160
    Abstract: Disclosed herein is a genetically-modified cell comprising in its genome a modified human T cell receptor alpha constant region gene, wherein the cell has reduced cell-surface expression of the endogenous T cell receptor. The present disclosure further relates to methods for producing such a genetically-modified cell, and to methods of using such a cell for treating a disease in a subject.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: February 13, 2018
    Assignee: Precision BioSciences, Inc.
    Inventors: Derek Jantz, James Jefferson Smith, Michael G. Nicholson, Daniel T. MacLeod, Victor Bartsevich, Jeyaraj Antony
  • Publication number: 20180023065
    Abstract: Targeted transcriptional effectors (transcription activators and transcription repressors) derived from meganucleases are described. Also described are nucleic acids encoding same, and methods of using same to regulate gene expression. The targeted transcriptional effectors can comprise (i) a meganuclease DNA-binding domain lacking endonuclease cleavage activity that binds to a target recognition site; and (ii) a transcription effector domain.
    Type: Application
    Filed: August 1, 2017
    Publication date: January 25, 2018
    Applicant: Duke University
    Inventors: Derek Jantz, Michael G. Nicholson, James Jefferson Smith
  • Publication number: 20170333481
    Abstract: Disclosed herein is a genetically-modified cell comprising in its genome a modified human T cell receptor alpha constant region gene, wherein the cell has reduced cell-surface expression of the endogenous T cell receptor. The present disclosure further relates to methods for producing such a genetically-modified cell, and to methods of using such a cell for treating a disease in a subject.
    Type: Application
    Filed: May 26, 2017
    Publication date: November 23, 2017
    Applicant: Precision BioSciences, Inc.
    Inventors: Derek Jantz, James Jefferson Smith, Michael G. Nicholson, Daniel T. MacLeod, Victor Bartsevich, Jeyaraj Antony
  • Publication number: 20170335010
    Abstract: Disclosed herein is a genetically-modified cell comprising in its genome a modified human T cell receptor alpha constant region gene, wherein the cell has reduced cell-surface expression of the endogenous T cell receptor. The present disclosure further relates to methods for producing such a genetically-modified cell, and to methods of using such a cell for treating a disease in a subject.
    Type: Application
    Filed: May 26, 2017
    Publication date: November 23, 2017
    Applicant: Precision BioSciences, Inc.
    Inventors: Derek Jantz, James Jefferson Smith, Michael G. Nicholson, Daniel T. MacLeod, Victor Bartsevich, Jeyaraj Antony
  • Publication number: 20170335299
    Abstract: Rationally-designed LAGLIDADG meganucleases and methods of making such meganucleases are provided. In addition, methods are provided for using the meganucleases to generate recombinant cells and organisms having a desired DNA sequence inserted into a limited number of loci within the genome, as well as methods of gene therapy, for treatment of pathogenic infections, and for in vitro applications in diagnostics and research.
    Type: Application
    Filed: March 11, 2017
    Publication date: November 23, 2017
    Applicant: Duke University
    Inventors: James Jefferson SMITH, Derek JANTZ, Homme W. HELLINGA
  • Patent number: 9822381
    Abstract: Methods of inserting genes into defined locations in the chromosomal DNA of cultured mammalian cell lines which are subject to gene amplification are disclosed. In particular, sequences of interest (e.g., genes encoding biotherapeutic proteins) are inserted proximal to selectable genes in amplifiable loci, and the transformed cells are subjected to selection to induce co-amplification of the selectable gene and the sequence of interest. The invention also relates to meganucleases, vectors and engineered cell lines necessary for performing the methods, to cell lines resulting from the application of the methods, and use of the cell lines to produce protein products of interest.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: November 21, 2017
    Assignee: Precision BioSciences, Inc.
    Inventors: Derek Jantz, James Jefferson Smith, Michael G. Nicholson
  • Publication number: 20170298420
    Abstract: Methods of cleaving double-stranded DNA that can be recognized and cleaved by a rationally-designed, I-CreI-derived meganuclease are provided. Also provided are recombinant nucleic acids, cells, and organisms containing such recombinant nucleic acids, as well as cells and organisms produced using such meganucleases. Also provided are methods of conducting a custom-designed, I-CreI-derived meganuclease business.
    Type: Application
    Filed: March 28, 2017
    Publication date: October 19, 2017
    Applicant: Precision BioSciences, Inc.
    Inventors: Derek JANTZ, James Jefferson SMITH
  • Publication number: 20170298419
    Abstract: Methods of cleaving double-stranded DNA that can be recognized and cleaved by a rationally-designed, I-CreI-derived meganuclease are provided. Also provided are recombinant nucleic acids, cells, and organisms containing such recombinant nucleic acids, as well as cells and organisms produced using such meganucleases. Also provided are methods of conducting a custom-designed, I-CreI-derived meganuclease business.
    Type: Application
    Filed: March 28, 2017
    Publication date: October 19, 2017
    Applicant: Precision BioSciences, Inc.
    Inventors: Derek JANTZ, James Jefferson SMITH
  • Patent number: 9683257
    Abstract: Methods of cleaving double-stranded DNA that can be recognized and cleaved by a rationally-designed, I-CreI-derived meganuclease are provided. Also provided are recombinant nucleic acids, cells, and organisms containing such recombinant nucleic acids, as well as cells and organisms produced using such meganucleases. Also provided are methods of conducting a custom-designed, I-CreI-derived meganuclease business.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: June 20, 2017
    Assignee: Precision BioSciences, Inc.
    Inventors: Derek Jantz, James Jefferson Smith
  • Publication number: 20170106055
    Abstract: The invention relates to the field of molecular biology and recombinant nucleic acid technology. In particular, the invention relates to methods of treating patients with Duchenne Muscular Dystrophy comprising the removal of at least one exon from the dystrophin gene using engineered nucleases to restore the normal reading frame. Further disclosed are engineered nucleases suitable for using the methods.
    Type: Application
    Filed: March 12, 2015
    Publication date: April 20, 2017
    Inventors: Derek JANTZ, James Jefferson SMITH, Michael G. NICHOLSON