Patents by Inventor Derrick Liu

Derrick Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180122813
    Abstract: A method of forming an arrangement of long and short fins on a substrate, including forming a plurality of finFET devices having long fins on the substrate, where the long fins have a fin length in the range of about 180 nm to about 350 nm, and forming a plurality of finFET devices having short fins on the substrate, where the short fins have a fin length in the range of about 60 nm to about 140 nm, wherein at least one of the plurality of finFET devices having a long fin is adjacent to at least one of the plurality of finFET devices having a short fin.
    Type: Application
    Filed: December 20, 2017
    Publication date: May 3, 2018
    Inventors: Ruqiang Bao, Dechao Guo, Derrick Liu, Huimei Zhou
  • Publication number: 20180083013
    Abstract: A method of forming an arrangement of long and short fins on a substrate, including forming a plurality of finFET devices having long fins on the substrate, where the long fins have a fin length in the range of about 180 nm to about 350 nm, and forming a plurality of finFET devices having short fins on the substrate, where the short fins have a fin length in the range of about 60 nm to about 140 nm, wherein at least one of the plurality of finFET devices having a long fin is adjacent to at least one of the plurality of finFET devices having a short fin.
    Type: Application
    Filed: September 22, 2016
    Publication date: March 22, 2018
    Inventors: Ruqiang Bao, Dechao Guo, Derrick Liu, Huimei Zhou
  • Publication number: 20180083017
    Abstract: A method of forming an arrangement of long and short fins on a substrate, including forming a plurality of finFET devices having long fins on the substrate, where the long fins have a fin length in the range of about 180 nm to about 350 nm, and forming a plurality of finFET devices having short fins on the substrate, where the short fins have a fin length in the range of about 60 nm to about 140 nm, wherein at least one of the plurality of finFET devices having a long fin is adjacent to at least one of the plurality of finFET devices having a short fin.
    Type: Application
    Filed: November 27, 2017
    Publication date: March 22, 2018
    Inventors: Ruqiang Bao, Dechao Guo, Derrick Liu, Huimei Zhou
  • Publication number: 20180083015
    Abstract: A method of forming an arrangement of long and short fins on a substrate, including forming a plurality of finFET devices having long fins on the substrate, where the long fins have a fin length in the range of about 180 nm to about 350 nm, and forming a plurality of finFET devices having short fins on the substrate, where the short fins have a fin length in the range of about 60 nm to about 140 nm, wherein at least one of the plurality of finFET devices having a long fin is adjacent to at least one of the plurality of finFET devices having a short fin.
    Type: Application
    Filed: June 7, 2017
    Publication date: March 22, 2018
    Inventors: Ruqiang Bao, Dechao Guo, Derrick Liu, Huimei Zhou
  • Publication number: 20180083016
    Abstract: A method of forming an arrangement of long and short fins on a substrate, including forming a plurality of finFET devices having long fins on the substrate, where the long fins have a fin length in the range of about 180 nm to about 350 nm, and forming a plurality of finFET devices having short fins on the substrate, where the short fins have a fin length in the range of about 60 nm to about 140 nm, wherein at least one of the plurality of finFET devices having a long fin is adjacent to at least one of the plurality of finFET devices having a short fin.
    Type: Application
    Filed: October 19, 2017
    Publication date: March 22, 2018
    Inventors: Ruqiang Bao, Dechao Guo, Derrick Liu, Huimei Zhou
  • Patent number: 9922983
    Abstract: A method of forming an arrangement of long and short fins on a substrate, including forming a plurality of finFET devices having long fins on the substrate, where the long fins have a fin length in the range of about 180 nm to about 350 nm, and forming a plurality of finFET devices having short fins on the substrate, where the short fins have a fin length in the range of about 60 nm to about 140 nm, wherein at least one of the plurality of finFET devices having a long fin is adjacent to at least one of the plurality of finFET devices having a short fin.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: March 20, 2018
    Assignee: International Business Machines Corporation
    Inventors: Ruqiang Bao, Dechao Guo, Derrick Liu, Huimei Zhou
  • Patent number: 9922984
    Abstract: A method of forming an arrangement of long and short fins on a substrate, including forming a plurality of finFET devices having long fins on the substrate, where the long fins have a fin length in the range of about 180 nm to about 350 nm, and forming a plurality of finFET devices having short fins on the substrate, where the short fins have a fin length in the range of about 60 nm to about 140 nm, wherein at least one of the plurality of finFET devices having a long fin is adjacent to at least one of the plurality of finFET devices having a short fin.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: March 20, 2018
    Assignee: International Business Machines Corporation
    Inventors: Ruqiang Bao, Dechao Guo, Derrick Liu, Huimei Zhou
  • Publication number: 20180069027
    Abstract: A semiconductor structure includes a stained fin, a gate upon the strain fin, and a spacer upon a sidewall of the gate and upon an end surface of the strained fin. The end surface of the strained fin is coplanar with a sidewall of the gate. The spacer limits relaxation of the strained fin.
    Type: Application
    Filed: October 27, 2017
    Publication date: March 8, 2018
    Inventors: Kangguo Cheng, Bruce B. Doris, Hong He, Sivananda K. Kanakasabapathy, Gauri Karve, Juntao Li, Fee Li Lie, Derrick Liu, Chun Wing Yeung
  • Publication number: 20180061942
    Abstract: A semiconductor structure is provided that includes a semiconductor fin portion having an end wall and extending upward from a substrate. A gate structure straddles a portion of the semiconductor fin portion. A first set of gate spacers is located on opposing sidewall surfaces of the gate structure; and a second set of gate spacers is located on sidewalls of the first set of gate spacers. One gate spacer of the second set of gate spacers has a lower portion that directly contacts the end wall of the semiconductor fin portion.
    Type: Application
    Filed: October 26, 2017
    Publication date: March 1, 2018
    Inventors: Bruce B. Doris, Hong He, Sivananda K. Kanakasabapathy, Gauri Karve, Fee Li Lie, Derrick Liu, Soon-Cheon Seo, Stuart A. Sieg
  • Publication number: 20180061941
    Abstract: A semiconductor structure is provided that includes a semiconductor fin portion having an end wall and extending upward from a substrate. A gate structure straddles a portion of the semiconductor fin portion. A first set of gate spacers is located on opposing sidewall surfaces of the gate structure; and a second set of gate spacers is located on sidewalls of the first set of gate spacers. One gate spacer of the second set of gate spacers has a lower portion that directly contacts the end wall of the semiconductor fin portion.
    Type: Application
    Filed: October 26, 2017
    Publication date: March 1, 2018
    Inventors: Bruce B. Doris, Hong He, Sivananda K. Kanakasabapathy, Gauri Karve, Fee Li Lie, Derrick Liu, Soon-Cheon Seo, Stuart A. Sieg
  • Patent number: 9881937
    Abstract: A semiconductor structure includes a first strained fin portion and a second strained fin portion, a pair of inactive inner gate structures upon respective strained fin portions, and spacers upon outer sidewalls surfaces of the inactive inner gate structures, upon the inner sidewall surfaces of the inactive inner gate structures, and upon the first strained fin portion and the second strained fin portion end surfaces. The first strained fin portion and the second strained fin portion end surfaces are coplanar with respective inner sidewall surfaces of the inactive inner gate structures. The spacer formed upon the end surfaces limits relaxation of the first strained fin portion and the second strained fin portion and limits shorting between the first strained fin portion and the second strained fin portion.
    Type: Grant
    Filed: January 3, 2017
    Date of Patent: January 30, 2018
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Hong He, Sivananda K. Kanakasabapathy, Gauri Karve, Juntao Li, Fee Li Lie, Derrick Liu, Chun Wing Yeung
  • Patent number: 9876074
    Abstract: A semiconductor structure is provided that includes a semiconductor fin portion having an end wall and extending upward from a substrate. A gate structure straddles a portion of the semiconductor fin portion. A first set of gate spacers is located on opposing sidewall surfaces of the gate structure; and a second set of gate spacers is located on sidewalls of the first set of gate spacers. One gate spacer of the second set of gate spacers has a lower portion that directly contacts the end wall of the semiconductor fin portion.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: January 23, 2018
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, Hong He, Sivananda K. Kanakasabapathy, Gauri Karve, Fee Li Lie, Derrick Liu, Soon-Cheon Seo, Stuart A. Sieg
  • Publication number: 20170133372
    Abstract: A method of making a semiconductor device comprises forming a first channel region comprising a first channel region material and a second channel region comprising a second channel region material; disposing a gate dielectric on the first channel region and second channel region; depositing a work function modifying material on the gate dielectric; disposing a mask over the work function modifying material deposited on the gate dielectric disposed on the first channel region; removing the work function modifying material from the unmasked gate dielectric disposed on the second channel region; removing the mask from the work function modifying material deposited on the gate dielectric disposed on the first channel region; forming a first gate electrode on the work function modifying material deposited on the first channel region and forming a second gate electrode on the gate dielectric disposed on the second channel region.
    Type: Application
    Filed: November 6, 2015
    Publication date: May 11, 2017
    Inventors: RUQIANG BAO, GAURI KARVE, DERRICK LIU, ROBERT R. ROBISON, GEN TSUTSUI, REINALDO A. VEGA, KOJI WATANABE
  • Publication number: 20170133272
    Abstract: A method of making a semiconductor device comprises forming a first channel region comprising a first channel region material and a second channel region comprising a second channel region material; disposing a gate dielectric on the first channel region and second channel region; depositing a work function modifying material on the gate dielectric; disposing a mask over the work function modifying material deposited on the gate dielectric disposed on the first channel region; removing the work function modifying material from the unmasked gate dielectric disposed on the second channel region; removing the mask from the work function modifying material deposited on the gate dielectric disposed on the first channel region; forming a first gate electrode on the work function modifying material deposited on the first channel region and forming a second gate electrode on the gate dielectric disposed on the second channel region.
    Type: Application
    Filed: December 14, 2015
    Publication date: May 11, 2017
    Inventors: RUQIANG BAO, GAURI KARVE, DERRICK LIU, ROBERT R. ROBISON, GEN TSUTSUI, REINALDO A. VEGA, KOJI WATANABE
  • Publication number: 20170117300
    Abstract: A semiconductor structure includes a first strained fin portion and a second strained fin portion, a pair of inactive inner gate structures upon respective strained fin portions, and spacers upon outer sidewalls surfaces of the inactive inner gate structures, upon the inner sidewall surfaces of the inactive inner gate structures, and upon the first strained fin portion and the second strained fin portion end surfaces. The first strained fin portion and the second strained fin portion end surfaces are coplanar with respective inner sidewall surfaces of the inactive inner gate structures. The spacer formed upon the end surfaces limits relaxation of the first strained fin portion and the second strained fin portion and limits shorting between the first strained fin portion and the second strained fin portion.
    Type: Application
    Filed: January 3, 2017
    Publication date: April 27, 2017
    Inventors: Kangguo Cheng, Bruce B. Doris, Hong He, Sivananda K. Kanakasabapathy, Gauri Karve, Juntao Li, Fee Li Lie, Derrick Liu, Chun Wing Yeung
  • Patent number: 9576979
    Abstract: A semiconductor structure includes a first strained fin portion and a second strained fin portion, a pair of inactive inner gate structures upon respective strained fin portions, and spacers upon outer sidewalls surfaces of the inactive inner gate structures, upon the inner sidewall surfaces of the inactive inner gate structures, and upon the first strained fin portion and the second strained fin portion end surfaces. The first strained fin portion and the second strained fin portion end surfaces are coplanar with respective inner sidewall surfaces of the inactive inner gate structures. The spacer formed upon the end surfaces limits relaxation of the first strained fin portion and the second strained fin portion and limits shorting between the first strained fin portion and the second strained fin portion.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: February 21, 2017
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Hong He, Sivananda K. Kanakasabapathy, Gauri Karve, Juntao Li, Fee Li Lie, Derrick Liu, Chun Wing Yeung
  • Publication number: 20160351590
    Abstract: A semiconductor structure includes a first strained fin portion and a second strained fin portion, a pair of inactive inner gate structures upon respective strained fin portions, and spacers upon outer sidewalls surfaces of the inactive inner gate structures, upon the inner sidewall surfaces of the inactive inner gate structures, and upon the first strained fin portion and the second strained fin portion end surfaces. The first strained fin portion and the second strained fin portion end surfaces are coplanar with respective inner sidewall surfaces of the inactive inner gate structures. The spacer formed upon the end surfaces limits relaxation of the first strained fin portion and the second strained fin portion and limits shorting between the first strained fin portion and the second strained fin portion.
    Type: Application
    Filed: May 27, 2015
    Publication date: December 1, 2016
    Inventors: Kangguo Cheng, Bruce B. Doris, Hong He, Sivananda K. Kanakasabapathy, Gauri Karve, Juntao Li, Fee Li Lie, Derrick Liu, Chun Wing Yeung
  • Publication number: 20160343861
    Abstract: A semiconductor structure is provided that includes a semiconductor fin portion having an end wall and extending upward from a substrate. A gate structure straddles a portion of the semiconductor fin portion. A first set of gate spacers is located on opposing sidewall surfaces of the gate structure; and a second set of gate spacers is located on sidewalls of the first set of gate spacers. One gate spacer of the second set of gate spacers has a lower portion that directly contacts the end wall of the semiconductor fin portion.
    Type: Application
    Filed: May 22, 2015
    Publication date: November 24, 2016
    Inventors: Bruce B. Doris, Hong He, Sivananda K. Kanakasabapathy, Gauri Karve, Fee Li Lie, Derrick Liu, Soon-Cheon Seo, Stuart A. Sieg
  • Publication number: 20160163707
    Abstract: Embodiments of the present invention provide a method for epitaxially growing a FinFET. One method may include providing a semiconductor substrate including an insulator and an underlayer; forming a channel layer on the semiconductor substrate using epitaxial growth; etching a recess into the channel layer and epitaxially regrowing a portion on the channel layer; etching the channel layer and the underlayer to form fins; forming a gate structure and a set of spacers; etching a source drain region into the channel layer; and forming a source drain material in the source drain region.
    Type: Application
    Filed: February 5, 2016
    Publication date: June 9, 2016
    Inventors: Kangguo Cheng, Eric C.T. Harley, Judson R. Holt, Gauri V. Karve, Yue Ke, Derrick Liu, Timothy J. McArdle, Shogo Mochizuki, Alexander Reznicek, Melissa Alyson Smith
  • Patent number: 9312426
    Abstract: Disclosed are embodiments of a structure with a metal silicide transparent conductive electrode, which is commercially viable, robust and safe to use and, thus, optimal for incorporation into devices, such as flat panel displays, touch panels, solar cells, light emitting diodes (LEDs), organic optoelectronic devices, etc. Specifically, the structure can comprise a substrate (e.g., a glass or plastic substrate) and a transparent conducting film on that substrate. The transparent conducting film can comprise a metal silicide nanowire network. For example, in one embodiment, the metal silicide nanowire network can comprise multiple metal silicide nanowires fused together in a disorderly arrangement so that they form a mesh. In another embodiment, the metal silicide nanowire network can comprise multiple metal silicide nanowires patterned so that they form a grid. Also disclosed herein are various different method embodiments for forming such a structure.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: April 12, 2016
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey P. Gambino, Derrick Liu, Daniel S. Vanslette