Patents by Inventor Devendra K. Sadana

Devendra K. Sadana has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11068777
    Abstract: Controllable resistance elements and methods of setting the same include a junction field effect transistor configured to provide a resistance on a signal line. A first pass transistor is configured to apply a charge increment or decrement to the junction field effect transistor responsive to a control pulse, such that the resistance on the signal line changes.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: July 20, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Martin M. Frank, Devendra K. Sadana
  • Patent number: 11069833
    Abstract: An optoelectronic device that includes a germanium containing buffer layer atop a silicon containing substrate, and a first distributed Bragg reflector stack of III-V semiconductor material layers on the buffer layer. The optoelectronic device further includes an active layer of III-V semiconductor material present on the first distributed Bragg reflector stack, wherein a difference in lattice dimension between the active layer and the first distributed brag reflector stack induces a strain in the active layer. A second distributed Bragg reflector stack of III-V semiconductor material layers having a may be present on the active layer.
    Type: Grant
    Filed: January 2, 2020
    Date of Patent: July 20, 2021
    Assignee: International Business Machines Corporation
    Inventors: Jeehwan Kim, Ning Li, Devendra K. Sadana
  • Patent number: 11069832
    Abstract: An optoelectronic device that includes a germanium containing buffer layer atop a silicon containing substrate, and a first distributed Bragg reflector stack of III-V semiconductor material layers on the buffer layer. The optoelectronic device further includes an active layer of III-V semiconductor material present on the first distributed Bragg reflector stack, wherein a difference in lattice dimension between the active layer and the first distributed brag reflector stack induces a strain in the active layer. A second distributed Bragg reflector stack of III-V semiconductor material layers having a may be present on the active layer.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: July 20, 2021
    Assignee: International Business Machines Corporation
    Inventors: Jeehwan Kim, Ning Li, Devendra K. Sadana
  • Publication number: 20210217809
    Abstract: Techniques for the integration of SiGe/Si optical resonators with qubit and CMOS devices using structured substrates are provided. In one aspect, a waveguide structure includes: a wafer; and a waveguide disposed on the wafer, the waveguide having a SiGe core surrounded by Si, wherein the wafer has a lower refractive index than the Si (e.g., sapphire, diamond, SiC, and/or GaN). A computing device and a method for quantum computing are also provided.
    Type: Application
    Filed: March 26, 2021
    Publication date: July 15, 2021
    Inventors: Jason S. Orcutt, Devendra K. Sadana
  • Patent number: 11063161
    Abstract: A method of forming a photovoltaic device that includes epitaxially growing a first conductivity type semiconductor material of a type III-V semiconductor on a semiconductor substrate. The first conductivity type semiconductor material continuously extending along an entirety of the semiconductor substrate in a plurality of triangular shaped islands; and conformally forming a layer of type III-V semiconductor material having a second conductivity type on the plurality of triangular shaped islands.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: July 13, 2021
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Ning Li, Devendra K. Sadana, Ghavam G. Shahidi
  • Patent number: 11062204
    Abstract: Methods of training a neural network include applying an input signal to an array of weights to generate weighted output signals based on resistances of respective weights in the array of weights. A difference between the weighted output signals and a predetermined expected output is determined. Weights in the array of weights are set by applying a pulse to a controllable resistance element in each weight. The pulse increments or decrements a charge on a junction field effect transistor in the respective controllable resistance element.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: July 13, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Martin M. Frank, Devendra K. Sadana
  • Patent number: 11055612
    Abstract: Neural networks include neuron layers arranged in order from an input neuron layer to an output neuron layer, with at least one hidden layer between them. Weight arrays between respective pairs of neuron layers each include controllable resistance elements and AND gates configured to control addressing of the plurality of controllable resistance elements. Each controllable resistance element includes a junction field effect transistor configured to provide a resistance on a signal line and a first pass transistor configured to apply a charge increment or decrement to the junction field effect transistor responsive to a control pulse, such that the resistance on the signal line changes. The control pulse is only passed to a controllable resistance element when a respective AND gate is triggered. A training module is configured to train the neural network by adjusting resistances of the plurality of controllable resistance elements in each of the weight arrays.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: July 6, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Martin M. Frank, Devendra K. Sadana
  • Publication number: 20210184113
    Abstract: A cross-point memory semiconductor structure and a method of creating the same are provided. There is a first electrode layer on top of the substrate. A conductive oxide diffusion barrier layer is on top of the first electrode. A polycrystalline silicon diode is on top of the conductive oxide diffusion barrier. A phase change material (PCM) layer is on top of the polycrystalline silicon diode. A second electrode is on top of the PCM layer.
    Type: Application
    Filed: December 17, 2019
    Publication date: June 17, 2021
    Inventors: Ning Li, Fabio Carta, Devendra K. Sadana, Tze-Chiang Chen
  • Publication number: 20210184118
    Abstract: A bottom electrode is deposited on top of a substrate. A dielectric material layer is deposited on top of the bottom electrode. A hole is created in the dielectric material layer. A lift off layer is spun on and baked on the dielectric material layer. A photoresist layer is spun on and baked on the lift off layer. UV lithography is performed to create an opening above the hole in the dielectric material layer. An Ag layer is deposited on top of the remaining patterned dielectric material layer and the photoresist layer. A Germanium Antimony Telluride (GST) layer is deposited on top of the Ag layer. A top electrode is deposited on top of the GST layer. The Ag layer, the GST layer, and the top electrode located on top of the photoresist layer along with the photoresist layer and the lift off layer are removed.
    Type: Application
    Filed: December 11, 2019
    Publication date: June 17, 2021
    Inventors: Ning Li, Joel P. de Souza, Stephen W. Bedell, Devendra K. Sadana
  • Publication number: 20210175495
    Abstract: An energy storage device is provided that includes a pre-lithiated silicon based anode and a carbon nanotube based cathode. The pre-lithiated silicon anode has a porous region and a non-porous region. The full cell energy storage device has high electrochemical performance which exhibits greater 200 rechargeable cycles with less than 25% after 10 charge discharge cycles relative to the first discharge cycle, a maximum specific discharge capacity greater than 300 mAh/g and a specific capacity of greater than 100 mAh/g for over 130 cycles. Such an energy storage device is scalable for a wide array of applications due to its wafer level processing and silicon-based substrate integrability.
    Type: Application
    Filed: December 9, 2019
    Publication date: June 10, 2021
    Inventors: John Collins, Ali Afzali-Ardakani, Joel P. de Souza, Devendra K. Sadana
  • Publication number: 20210167370
    Abstract: A three dimensional (3D) In-Silicon energy storage device is provided by a method that includes forming a thick dielectric material layer on a surface of a silicon based substrate. A 3D trench is then formed into the dielectric material layer and the silicon based substrate, and thereafter a dielectric material spacer is formed, in addition to the dielectric remaining on the field of the substrate, as well as along a sidewall of the 3D trench, and on a first portion of a sub-surface of the silicon based substrate that is present at a bottom of the 3D trench. A second portion of the sub-surface of the silicon based substrate that is present in the 3D trench remains physically exposed. Active energy storage device materials can then be formed laterally adjacent to the dielectric material spacer that is within the 3D trench and on the dielectric material layer.
    Type: Application
    Filed: December 3, 2019
    Publication date: June 3, 2021
    Inventors: John Collins, John M. Papalia, David L. Rath, Devendra K. Sadana
  • Patent number: 11023802
    Abstract: Methods for controlling the resistance of a controllable resistive element include determining an amount of electrical resistance change for the controllable resistive element. A concentration difference is determined for a charge carrier ion in a resistor layer of the controllable resistance element that corresponds to the electrical resistance change for the controllable resistive element. A duration and amplitude of a current pulse is determined that changes the charge carrier ion concentration by the determined difference. A positive or negative current pulse is applied to a controllable resistive element for the determined duration.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: June 1, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Joel P. de Souza, Yun Seog Lee, Ning Li, Devendra K. Sadana
  • Patent number: 11025029
    Abstract: A nanolaser includes a silicon substrate and a III-V layer formed on the silicon substrate having a defect density due to differences in materials. A laser region is formed on or in the III-V layer, the laser region having a size based upon the defect density.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: June 1, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ning Li, Devendra K. Sadana
  • Patent number: 11024754
    Abstract: A photovoltaic device that includes a p-n junction of first type III-V semiconductor material layers, and a window layer of a second type III-V semiconductor material on the light receiving end of the p-n junction, wherein the second type III-V semiconductor material has a greater band gap than the first type III-V semiconductor material, and the window layer of the photovoltaic device has a cross-sectional area of microscale.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: June 1, 2021
    Assignee: International Business Machines Corporation
    Inventors: Talia S. Gershon, Ning Li, Devendra K. Sadana, Ghavam G. Shahidi
  • Publication number: 20210151564
    Abstract: A semiconductor device includes an extremely thin semiconductor-on-insulator substrate (ETSOI) having a base substrate, a thin semiconductor layer and a buried dielectric therebetween. A device channel is formed in the thin semiconductor layer. Source and drain regions are formed at opposing positions relative to the device channel. The source and drain regions include an n-type material deposited on the buried dielectric within a thickness of the thin semiconductor layer. A gate structure is formed over the device channel.
    Type: Application
    Filed: December 28, 2020
    Publication date: May 20, 2021
    Inventors: Joel P. De Souza, Keith E. Fogel, JeeHwan Kim, Devendra K. Sadana
  • Publication number: 20210151743
    Abstract: A battery includes a cathode with a metal halide and an electrically conductive material, wherein the metal halide acts as an active cathode material; a porous silicon anode with a surface having pores with a depth of about 0.5 microns to about 500 microns, and a metal on the surface and in at least some of the pores thereof; and an electrolyte contacting the anode and the cathode, wherein the electrolyte includes a nitrile moiety.
    Type: Application
    Filed: November 15, 2019
    Publication date: May 20, 2021
    Inventors: Jangwoo Kim, Young-Hye Na, Robert David Allen, Joel P. de Souza, John Collins, Devendra K. Sadana
  • Publication number: 20210151653
    Abstract: An active cooling structure, comprising a non-superconducting layer, a superconducting layer, and an array of Superconductor-Insulator-Normal Metal (NIS) tunnel junctions. The non-superconducting layer may comprise a plurality of non-superconducting traces. The superconducting layer may comprise a plurality of superconducting traces. The array of Superconductor-Insulator-Normal Metal (NIS) tunnel junctions may be located between the plurality of non-superconducting traces and the plurality of superconducting traces.
    Type: Application
    Filed: November 19, 2019
    Publication date: May 20, 2021
    Inventors: Steven J. Holmes, Devendra K. Sadana, Stephen W. Bedell, Ning Li
  • Publication number: 20210151719
    Abstract: An energy storage device has all components, e.g. anode, electrolyte, and cathode contained and sealed with a trench in a substrate. Various methods and structures are disclosed for sealing the components. In some embodiments, a sealer or sealing layer seals the components. One embodiment uses a tension clamp to contain the components with additional pressure. Another embodiment uses a cathode structure cup which is held in place in the substrate via sidewall trench features. Different external connections to the device are disclosed. The invention enables full three-dimensional components to be created and contained entirely within the substrate during assembly, curing, galvanic cycling and other manufacturing processes and provides improved sealing of the components during device operation.
    Type: Application
    Filed: November 18, 2019
    Publication date: May 20, 2021
    Inventors: John Collins, John M. Papalia, Devendra K. Sadana, Matthew Sagianis
  • Publication number: 20210151575
    Abstract: Devices, systems, methods, computer-implemented methods, apparatus, and/or computer program products that can facilitate a suspended Majorana fermion device comprising an ion implant defined nanorod in a semiconducting device are provided. According to an embodiment, a quantum computing device can comprise a Majorana fermion device coupled to an ion implanted region. The quantum computing device can further comprise an encapsulation film coupled to the ion implanted region and a substrate layer. The encapsulation film suspends the Majorana fermion device in the quantum computing device.
    Type: Application
    Filed: November 19, 2019
    Publication date: May 20, 2021
    Inventors: Steven J. Holmes, Devendra K. Sadana, Sean Hart, Patryk Gumann, Stephen W. Bedell, Ning Li
  • Publication number: 20210151658
    Abstract: A method for fabricating an active cooling structure, comprising forming an array of Superconductor-Insulator-Normal Metal (NIS) tunnel structures between a non-conducting layer and a superconducting layer. The non-superconducting layer may comprise a plurality of non-superconducting traces running in a first direction. The superconductor layer may comprise a plurality of superconducting traces running in a second direction.
    Type: Application
    Filed: November 19, 2019
    Publication date: May 20, 2021
    Inventors: Steven J. Holmes, Devendra K. Sadana, Stephen W. Bedell, Ning Li