Patents by Inventor Devendra K. Sadana

Devendra K. Sadana has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230122482
    Abstract: Devices, systems, methods, computer-implemented methods, apparatus, and/or computer program products that can facilitate an epitaxial Josephson junction transmon device are provided. According to an embodiment, a device can comprise a substrate. The device can further comprise an epitaxial Josephson junction transmon device coupled to the substrate. According to an embodiment, a device can comprise an epitaxial Josephson junction transmon device coupled to a substrate. The device can further comprise a tuning gate coupled to the substrate and formed across the epitaxial Josephson junction transmon device. According to an embodiment, a device can comprise a first superconducting region and a second superconducting region formed on a substrate. The device can further comprise an epitaxial Josephson junction tunneling channel coupled to the first superconducting region and the second superconducting region.
    Type: Application
    Filed: December 9, 2022
    Publication date: April 20, 2023
    Inventors: Steven J. Holmes, Devendra K. Sadana, Brent A. Wacaser, Damon Farmer
  • Publication number: 20230123642
    Abstract: A phase change memory (PCM) structure configured for performing a gradual reset operation includes first and second electrodes and a phase change material layer disposed between the first and second electrodes. The PCM structure further includes a thermal insulation layer disposed on at least sidewalls of the first and second electrodes and phase change material layer. The thermal insulation layer is configured to provide non-uniform heating of the phase change material layer. Optionally, the thermal insulation layer may be formed as an air gap. The PCM structure may be configured having the first and second electrodes aligned in a vertical or a lateral arrangement.
    Type: Application
    Filed: December 15, 2022
    Publication date: April 20, 2023
    Inventors: Ning Li, Wanki Kim, Devendra K. Sadana
  • Publication number: 20230116053
    Abstract: Compound semiconductor and silicon-based structures are epitaxially formed on semiconductor substrates and transferred to a carrier substrate. The transferred structures can be used to form discrete photovoltaic and light-emitting devices on the carrier substrate. Silicon-containing layers grown on doped donor semiconductor substrates and compound semiconductor layers grown on off-cut semiconductor substrates form elements of the devices. The carrier substrates may be electrically insulating substrates or include electrically insulating layers to which photovoltaic and/or light-emitting structures are bonded.
    Type: Application
    Filed: September 29, 2021
    Publication date: April 13, 2023
    Inventors: Devendra K. Sadana, Ning Li, Ghavam G. Shahidi, Frank Robert Libsch, Stephen W. Bedell
  • Publication number: 20230086967
    Abstract: A semiconductor device fabrication method is provided. The semiconductor device fabrication method includes frontside semiconductor device processing on a frontside of a wafer, flipping the wafer, backside semiconductor device processing on a backside of the wafer and backside and frontside contact formation processing on the backside and frontside of the wafer, respectively.
    Type: Application
    Filed: September 22, 2021
    Publication date: March 23, 2023
    Inventors: Sung Dae Suk, SOMNATH GHOSH, Chen Zhang, Junli Wang, Devendra K. Sadana, Dechao Guo
  • Publication number: 20230080397
    Abstract: A computing device is provided. The computing device includes a sapphire substrate having a first surface and a second surface opposed to the first surface, a light receiving device having a first surface and a second surface opposed to the first surface, the second surface of the light receiving device coupled to the first surface of the sapphire substrate, a memory coupled to the first surface of the light receiving device, and an antenna coupled to the first surface of the sapphire substrate.
    Type: Application
    Filed: September 16, 2021
    Publication date: March 16, 2023
    Inventors: Devendra K. Sadana, Ning Li
  • Patent number: 11585871
    Abstract: A system for and methods of semiconductor testing and characterization are disclosed. The system includes a parallel dipole line (PDL) system for applying a magnetic field to a sample in a measurement chamber and electrical equipment for testing the sample. The testing includes applying a first light exposure to the sample with the PDL system set to zero magnetic field and monitoring longitudinal resistance (Rxx) of the sample as intensity of the first light exposure varies. A second light exposure is applied with the PDL system set to maximum magnetic field, and transverse magnetoresistance (RB+) is monitored as light intensity varies. A third light exposure is applied with the PDL system set to minimum magnetic field, and transverse magnetoresistance (RB?) is monitored as light intensity varies. The characterization includes carrying out a photo-Hall analysis based on data from the testing.
    Type: Grant
    Filed: December 13, 2021
    Date of Patent: February 21, 2023
    Assignee: International Business Machines Corporation
    Inventors: Oki Gunawan, Devendra K. Sadana, Douglas Bishop, Tze-Chiang Chen
  • Patent number: 11588210
    Abstract: Methods of forming a controllable resistive element include forming source and drain regions in a substrate. A battery stack is formed on a substrate between the source and drain regions. Respective anode and cathode electrical connections are formed to the battery stack. Respective source and drain electrical connections are formed.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: February 21, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Joel P. De Souza, Yun Seog Lee, Ning Li, Devendra K. Sadana
  • Patent number: 11581472
    Abstract: A gated Josephson junction includes a substrate and a vertical Josephson junction formed on the substrate and extending substantially normal the substrate. The vertical Josephson junction includes a first superconducting layer, a semiconducting layer, and a second superconducting layer. The first superconducting layer, the semiconducting layer, and the second superconducting layer form a stack that is substantially perpendicular to the substrate. The gated Josephson junction includes a gate dielectric layer in contact with the first superconducting layer, the semiconducting layer, and the second superconducting layer at opposing side surfaces of the vertical Josephson junction, and a gate electrically conducting layer in contact with the gate dielectric layer. The gate electrically conducting layer is separated from the vertical Josephson junction by the gate dielectric layer.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: February 14, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Devendra K. Sadana, Ning Li, Stephen W. Bedell, Sean Hart, Patryk Gumann
  • Publication number: 20230044919
    Abstract: A phase change (PCM) memory device that includes a PCM and a resistance-capacitance (RC) circuit. The PCM has one or more PCM properties, each PCM property has a plurality of PCM property states. As the PCM property states of a given property are Set or Reset, the PCM property states each produce an incremental change to a property level of the respective/associated PCM property, e.g., PCM conductance. The incremental changes to property level of the PCM memory device are in response to application of one or more of a pulse number of voltage pulses. The RC circuit produces a configuring current that flows through the PCM in response to one or more of the voltage pulses. The configuring current modifies one or more of the incremental changes to one or more of the property levels so that the property level changes lineally with respect to the pulse number. The PCM memory device has use in a synapse connector, e.g., in a memory array.
    Type: Application
    Filed: August 6, 2021
    Publication date: February 9, 2023
    Inventors: Ning Li, Wanki Kim, Devendra K. Sadana
  • Patent number: 11563162
    Abstract: Devices, systems, methods, computer-implemented methods, apparatus, and/or computer program products that can facilitate an epitaxial Josephson junction transmon device are provided. According to an embodiment, a device can comprise a substrate. The device can further comprise an epitaxial Josephson junction transmon device coupled to the substrate. According to an embodiment, a device can comprise an epitaxial Josephson junction transmon device coupled to a substrate. The device can further comprise a tuning gate coupled to the substrate and formed across the epitaxial Josephson junction transmon device. According to an embodiment, a device can comprise a first superconducting region and a second superconducting region formed on a substrate. The device can further comprise an epitaxial Josephson junction tunneling channel coupled to the first superconducting region and the second superconducting region.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: January 24, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Steven J. Holmes, Devendra K. Sadana, Brent A. Wacaser, Damon Farmer
  • Patent number: 11547440
    Abstract: An access system having a communication component that interfaces with a first device and a second device, where the first device is located inside or on an entity and coupled to a biological organism of the entity, and where the second device is located outside the entity and a controller component that controls a function of the first device, employing the communication component, to provide treatment to the biological organism of the entity coupled to the first device based on a request received from the second device.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: January 10, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Steven J. Holmes, Bruce B. Doris, Devendra K. Sadana, Stephen W. Bedell, Jia Chen, Hariklia Deligianni
  • Publication number: 20230006194
    Abstract: Embodiments of this invention include different configuration of lithium batteries that have a cathode made of a lithium containing material, an anode, and an electrolyte/separator between the cathode and anode. The thin anode includes an anode current collector and a nucleation layer on the anode current collector surface that can include one or more thin a semiconductor layers made of a porous, single crystalline, semiconductor, e.g., silicon. A thin semiconductor layer has a layer thickness between 50 nanometers (nm) to 20 micrometers (?m). Configurations of single layer arrays of batteries in variations of electrical series and parallel connections are disclosed along with stacking single and multiple layer arrays (stacks) to form energy storage devices. The energy storage devices are flexible and can store high levels of energy per volume and/or weight. The energy storage devices can be formed into different physical configurations including encased stacked layers (e.g.
    Type: Application
    Filed: July 2, 2021
    Publication date: January 5, 2023
    Applicant: POSI ENERGY-SILICON POWER, LLC
    Inventor: Devendra K. Sadana
  • Patent number: 11522116
    Abstract: A vertical Josephson junction device includes a substrate, and an epitaxial stack formed on the substrate. The vertical Josephson junction device includes a first superconducting electrode embedded in the epitaxial stack, and a second superconducting electrode embedded in the epitaxial stack, the second superconducting electrode being separated from the first superconducting electrode by a dielectric layer. In operation, the first superconducting electrode, the dielectric layer, and the second superconducting electrode form a vertical Josephson junction.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: December 6, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Steven J. Holmes, Devendra K. Sadana
  • Patent number: 11515460
    Abstract: A quantum computing device is fabricated by forming, on a superconductor layer, a first resist pattern defining a device region and a sensing region within the device region. The superconductor layer within the sensing region is removed, exposing a region of an underlying semiconductor layer outside the device region. The exposed region of the semiconductor layer is implanted, forming an isolation region surrounding the device region. Using an etching process subsequent to the implanting, the sensing region and a portion of the device region of the superconductor layer adjacent to the isolation region are exposed. By depositing a first metal layer within the sensing region, a tunnel junction gate is formed. A reflectrometry wire comprising a second metal within the reflectrometry region is formed. A nanorod contact using the second metal within the portion of the device region outside the sensing region is formed.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: November 29, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Steven J. Holmes, Devendra K. Sadana, Sean Hart, Ning Li, Stephen W. Bedell, Patryk Gumann
  • Patent number: 11502171
    Abstract: A semiconductor device includes an extremely thin semiconductor-on-insulator substrate (ETSOI) having a base substrate, a thin semiconductor layer and a buried dielectric therebetween. A device channel is formed in the thin semiconductor layer. Source and drain regions are formed at opposing positions relative to the device channel. The source and drain regions include an n-type material deposited on the buried dielectric within a thickness of the thin semiconductor layer. A gate structure is formed over the device channel.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: November 15, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Joel P. De Souza, Keith E. Fogel, JeeHwan Kim, Devendra K. Sadana
  • Patent number: 11489219
    Abstract: An energy storage device sits within a trench with electrically insulated sides within a substrate. Within the trench there is an anode, an electrolyte disposed on the anode, and a cathode structure disposed on the electrolyte. Variations of an electrically conductive contact are disposed on and in electrical contact with the cathode structure. At least part of the conductive contact is disposed within the trench and the conductive contact partially seals the anode, electrolyte, and cathode structure within the trench. Conductive and/or non-conductive adhesives are used to complete the seal thereby enabling full working electrochemical devices where singulation of the devices from the substrate enables high control of device dimensionality and footprint.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: November 1, 2022
    Assignee: International Business Machines Corporation
    Inventors: John Collins, Devendra K. Sadana, Bucknell C. Webb, Paul S. Andry
  • Patent number: 11488001
    Abstract: According to one or more embodiments of the present invention, a crossbar array includes a cross-point synaptic device at each cross-point. The cross-point synaptic device includes a transistor that includes a first ion reservoir formed on a source and on a drain of the transistor. The transistor further includes an ion conductivity electrolyte layer formed on the first ion reservoir. The transistor further includes a second ion reservoir formed on the ion conductivity electrolyte layer. The transistor further includes a gate formed on the second ion reservoir.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: November 1, 2022
    Assignee: International Business Machines Corporation
    Inventors: Ning Li, Devendra K. Sadana
  • Patent number: 11444207
    Abstract: A semiconductor device includes a field-effect transistor, a first back-end-of-line (BEOL) metallization level and a second BEOL metallization level disposed above the first BEOL metallization level. A portion of the field-effect transistor includes lithium therein, and the field-effect transistor is integrated between the first and second BEOL metallization levels. The portion of the field-effect transistor including the lithium therein can be a channel layer, or a source and/or drain region.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: September 13, 2022
    Assignee: International Business Machines Corporation
    Inventors: Babar Khan, Ning Li, Arvind Kumar, Yun Seog Lee, Joel P. de Souza, Devendra K. Sadana
  • Patent number: 11444215
    Abstract: A device and method for fabricating a photovoltaic device includes forming a double layer transparent conductive oxide on a transparent substrate. The double layer transparent conductive oxide includes forming a doped electrode layer on the substrate, and forming a buffer layer on the doped electrode layer. The buffer layer includes an undoped or p-type doped intrinsic form of a same material as the doped electrode layer. A light-absorbing semiconductor structure includes a p-type semiconductor layer on the buffer layer, an intrinsic layer and an n-type semiconductor layer.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: September 13, 2022
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, BAY ZU PRECISION CO., LTD.
    Inventors: Shun-Ming Chen, Chien-Chih Huang, Joel P. Desouza, Augustin J. Hong, Jeehwan Kim, Chien-Yeh Ku, Devendra K. Sadana, Chuan-Wen Wang
  • Patent number: 11437614
    Abstract: An energy storage device is provided that includes a pre-lithiated silicon based anode and a carbon nanotube based cathode. The pre-lithiated silicon anode has a porous region and a non-porous region. The full cell energy storage device has high electrochemical performance which exhibits greater 200 rechargeable cycles with less than 25% after 10 charge discharge cycles relative to the first discharge cycle, a maximum specific discharge capacity greater than 300 mAh/g and a specific capacity of greater than 100 mAh/g for over 130 cycles. Such an energy storage device is scalable for a wide array of applications due to its wafer level processing and silicon-based substrate integrability.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: September 6, 2022
    Assignee: International Business Machines Corporation
    Inventors: John Collins, Ali Afzali-Ardakani, Joel P. de Souza, Devendra K. Sadana