Patents by Inventor Didier Salle

Didier Salle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170126237
    Abstract: A method of calibrating a digitally controlled oscillator (DCO). The method comprises configuring a fine tuning capacitive component of the DCO into a minimum capacitance configuration therefor, configuring a coarse tuning capacitive component of the DCO into a first configuration therefor and determining a resulting first output frequency of the DCO.
    Type: Application
    Filed: November 1, 2016
    Publication date: May 4, 2017
    Inventors: Cristian Pavao Moreira, Olivier Vincent Doare, Birama Goumballa, Didier Salle
  • Patent number: 9628093
    Abstract: A charge pump circuit comprises a first bipolar transistor device and a second bipolar switching device arranged in a differential pair configuration. A first terminal of each of the first and second bipolar switching devices are coupled to a supply. A second like terminal of each of the first and second bipolar switching devices are coupled together and to ground potential via a pulsed current source. A field effect switching device is also provided and the first terminal of the first bipolar switching device is coupled to the voltage supply via the field effect switching device.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: April 18, 2017
    Assignee: NXP USA, INC.
    Inventors: Birama Goumballa, Gilles Montoriol, Didier Salle
  • Publication number: 20170047933
    Abstract: A phase locked loop circuit includes a voltage controlled oscillator, VCO, configured to receive an oscillator tuning voltage; a phase detector configured to receive an input signal and a reference signal and generate a phase difference pulse signal that is varied in accordance with the oscillator tuning voltage; a loop filter having an input and an output; and a level shifter circuit coupled to an output of the phase detector and the loop filter input and configured to apply a level shift to the phase difference pulse signal such that the level shift is configured to compensate VCO gain and the loop filter averages the phase difference pulse signal to output an averaged signal to the VCO.
    Type: Application
    Filed: January 13, 2016
    Publication date: February 16, 2017
    Inventors: Pierre SAVARY, Birama GOUMBALLA, Didier SALLE
  • Publication number: 20170040943
    Abstract: An electronic device comprises a controllable capacitor bank and a capacitive divider arranged in parallel with the capacitor bank and configured to linearize the capacitor bank in a linearization frequency range of a frequency characteristic of the electronic device. The capacitive divider comprises a series arrangement of a first series capacitance, and a main capacitor bank. A control circuit coupled to one or more control inputs of the capacitive divider and controllable capacitor bank is configured to modify the equivalent capacitance of the capacitive divider and the controllable capacitor bank for providing capacitance steps, each capacitance step being variable over frequency such that for each step a frequency change ?f of the frequency characteristic is maintained constant in the linearization frequency range.
    Type: Application
    Filed: January 8, 2016
    Publication date: February 9, 2017
    Inventors: Cristian PAVAO-MOREIRA, Olivier Vincent DOARE, Birama GOUMBALLA, Didier SALLE
  • Patent number: 9509310
    Abstract: A driver circuit configured to produce a pair of output signals from a pair of input signals. The proposed solution brings improvements over conventional LVDS and subLVDS driver circuits because it enables the use of a single driver circuit (also known as “buffer”) which is compliant with both LVDS and subLVDS transmission standards. This allows flexibility with MCUs for instance the automotive industry. Further, proposed solution has the advantage of saving die size in comparison to a solution where two buffers would have been used for different transmission standards. Further, high speed transmission rate is maintained since transmission is performed for one standard at the time. An integrated circuit, a printed circuit and a data processing circuit are also claimed.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: November 29, 2016
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Birama Goumballa, Cristian Pavao-Moreira, Didier Salle
  • Patent number: 9401723
    Abstract: An XOR phase detector for a phase-locked loop PLL comprises an XOR gate which has an input for a periodic reference signal and another input connected to a frequency divider of the PLL. A level shifter has a level shifter input connected to an output of the XOR gate and a level shifter output connectable to a voltage-controlled oscillator VCO of the PLL. The level shifter is connectable between low and high voltage providers and has a high level and a low level. The level shifter is arranged to deliver at its output the high level or the low level depending on whether the voltage at the output of the XOR phase detector is low or high. The level shifter further has a setpoint input for setting the high level to a setpoint level.
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: July 26, 2016
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Gilles Montoriol, Olivier Vincent Doare, Birama Goumballa, Didier Salle
  • Patent number: 9395740
    Abstract: A temperature coefficient factor circuit is provided which generates a current which varies with temperature according to a programmable temperature coefficient factor. The temperature coefficient factor circuit comprises a first current source providing a first current with a positive temperature coefficient factor, a second current source providing a second current with a negative temperature coefficient factor, a common terminal, a first programmable amplifying current mirror, a second programmable amplifying current mirror and a current output circuit. The first programmable amplifying current mirror provides in dependence of a control signal ctrl an amplified first current to the common terminal. The second programmable amplifying current mirror conducts away in dependence of the control signal ctrl an amplified second current from the common terminal. The current output circuit provides the output current based on a difference current between the amplified first current and the amplified second current.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: July 19, 2016
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Cristian Pavao-Moreira, Birama Goumballa, Didier Salle
  • Publication number: 20160182064
    Abstract: A charge pump circuit comprises a first bipolar transistor device and a second bipolar switching device arranged in a differential pair configuration. A first terminal of each of the first and second bipolar switching devices are coupled to a supply. A second like terminal of each of the first and second bipolar switching devices are coupled together and to ground potential via a pulsed current source. A field effect switching device is also provided and the first terminal of the first bipolar switching device is coupled to the voltage supply via the field effect switching device.
    Type: Application
    Filed: July 18, 2013
    Publication date: June 23, 2016
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Birama GOUMBALLA, Gilles Montoriol, Didier SALLE
  • Publication number: 20160173109
    Abstract: An XOR phase detector for a phase-locked loop PLL comprises an XOR gate which has an input for a periodic reference signal and another input connected to a frequency divider of the PLL. A level shifter has a level shifter input connected to an output of the XOR gate and a level shifter output connectable to a voltage-controlled oscillator VCO of the PLL. The level shifter is connectable between low and high voltage providers and has a high level and a low level. The level shifter is arranged to deliver at its output the high level or the low level depending on whether the voltage at the output of the XOR phase detector is low or high. The level shifter further has a setpoint input for setting the high level to a setpoint level.
    Type: Application
    Filed: May 12, 2015
    Publication date: June 16, 2016
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: GILLES MONTORIOL, OLIVIER VINCENT DOARE, BIRAMA GOUMBALLA, DIDIER SALLE
  • Publication number: 20160154092
    Abstract: An integrated circuit for saturation detection comprises: a plurality of gain components; a plurality of saturation detectors with each saturation detector operably coupled to an output of one of the gain components; a plurality of logic elements with a first input of each logic element associated with an output of one of the saturation detectors; and a controller operably coupled to the plurality of logic elements. The controller is arranged to apply a signal to a second input of individual ones of the plurality of logic elements such that an output of the respective logic element identifies a saturation event of the saturation detector associated with that respective logic element.
    Type: Application
    Filed: May 4, 2015
    Publication date: June 2, 2016
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: CRISTIAN PAVAO-MOREIRA, DOMINIQUE DELBECQ, BIRAMA GOUMBALLA, DIDIER SALLE
  • Publication number: 20150309527
    Abstract: A temperature coefficient factor circuit is provided which generates a current which varies with temperature according to a programmable temperature coefficient factor. The temperature coefficient factor circuit comprises a first current source providing a first current with a positive temperature coefficient factor, a second current source providing a second current with a negative temperature coefficient factor, a common terminal, a first programmable amplifying current mirror, a second programmable amplifying current mirror and a current output circuit. The first programmable amplifying current mirror provides in dependence of a control signal ctrl an amplified first current to the common terminal. The second programmable amplifying current mirror conducts away in dependence of the control signal ctrl an amplified second current from the common terminal. The current output circuit provides the output current based on a difference current between the amplified first current and the amplified second current.
    Type: Application
    Filed: November 7, 2012
    Publication date: October 29, 2015
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Cristian PAVAO-MOREIRA, Birama GOUMBALLA, Didier SALLE
  • Publication number: 20150219753
    Abstract: A circuitry for and a method of generating a frequency modulated radar transmitter signal are provided. The circuitry comprises a modulation signal generator for generating a modulation signal having a waveform describing a required frequency modulation of the frequency modulated radar transmitter signal and comprises a PLL circuitry for generating the frequency modulated radar transmitter signal in dependence of the modulation signal. In the PLL circuitry a controllable frequency divider controls the output frequency of the PLL circuitry in dependence of the modulation signal. The PLL circuitry further comprises a phase detector, a controllable oscillator and possibly a low pass filter. The PLL circuitry further comprises a calibration circuitry being configured to control a parameter of at least one of the phase detector and the controllable oscillator to maintain a loop gain of PLL circuitry.
    Type: Application
    Filed: July 7, 2014
    Publication date: August 6, 2015
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: DIDIER SALLE, OLIVIER DOARE, CHRISTOPHE LANDEZ
  • Patent number: 8912857
    Abstract: A phase locked loop system, comprises: a voltage controlled oscillator circuit, comprising a first plurality of switchable varactors for selecting a frequency band of the VCO, that has a gain that changes with frequency band, and a second plurality of switchable varactors for varying the gain in the selected band. The PLL system has a PLL feedback circuit comprising a switching device for switching the feedback circuit to an open loop state wherein a plurality of predefined tuning voltages can be applied to the VCO; a frequency measurement device for measuring the synthesized VCO frequency; and a control unit operable to determine the gain with respect to the synthesized frequency and the tuning voltages.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: December 16, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Hugues Beaulaton, Thierry Cassagnes, Stéphane Colomines, Didier Salle
  • Patent number: 8731502
    Abstract: An integrated circuit comprises frequency generation circuitry for controlling a frequency source for use in an automotive radar system. The frequency generation circuitry comprises low-path modulation circuitry arranged to generate a first, low-path control signal for providing lower frequency modulation of the frequency source, the low-path modulation circuitry comprising a Phase Locked Loop (PLL) arranged to generate the low-path control signal for controlling the frequency source and a fractional-N divider located within a feedback loop of the PLL, and frequency pattern control module operably coupled to the fractional-N divider and arranged to control the fractional-N divider, by way of at least a first, lower frequency pattern control signal. The frequency generation circuitry further comprises high-path modulation circuitry arranged to generate a second, high-path control signal for providing higher frequency modulation of the frequency source.
    Type: Grant
    Filed: February 10, 2010
    Date of Patent: May 20, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Didier Salle, Olivier Doare, Stephane Dugalleix
  • Patent number: 8654006
    Abstract: An integrated circuit comprises frequency generation circuitry for controlling a frequency source for an automotive radar system. The frequency generation circuitry comprises a Phase Locked Loop (PLL) arranged to generate a control signal for controlling the frequency source, a fractional-N divider located within a feedback loop of the PLL, and frequency pattern control logic operably coupled to the fractional-N divider and arranged to control the fractional-N divider, by way of a frequency control signal, such that the PLL generates a Frequency Modulated Continuous Wave (FMCW) control signal.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: February 18, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Christophe Landez, Hugues Beaulaton, Thierry Cassagnes, Stephane Colomines, Robert G. Gach, Akbar Ghazinour, Hao Li, Gilles Montoriol, Didier Salle, Pierre Savary
  • Publication number: 20130187719
    Abstract: A phase locked loop system, comprises: a voltage controlled oscillator circuit, comprising a first plurality of switchable varactors for selecting a frequency band of the VCO, that has a gain that changes with frequency band, and a second plurality of switchable varactors for varying the gain in the selected band. The PLL system has a PLL feedback circuit comprising a switching device for switching the feedback circuit to an open loop state wherein a plurality of predefined tuning voltages can be applied to the VCO; a frequency measurement device for measuring the synthesized VCO frequency; and a control unit operable to determine the gain with respect to the synthesized frequency and the tuning voltages.
    Type: Application
    Filed: April 18, 2008
    Publication date: July 25, 2013
    Applicant: Freescale Semiconductor, Inc
    Inventors: Hugues Beaulaton, Thierry Cassagnes, Stéphane Colomines, Didier Salle
  • Patent number: 8145158
    Abstract: A wireless communication unit comprises a transmitter having a power amplifier biased by a bias circuit and a controller operably coupled to the bias circuit for setting one or more bias levels of the power amplifier. The bias circuit is a single bias circuit and is configured to provide either a current mode bias control of the power amplifier or a voltage mode bias control of the power amplifier in response to a control signal from the controller. In this manner, a single bias control circuit can be used to support applications that benefit from both current mode bias control and voltage mode bias control of the power amplifier.
    Type: Grant
    Filed: April 3, 2006
    Date of Patent: March 27, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Didier Salle, Arnaud Girardot, Gerald Haennig, Pierre Savary
  • Publication number: 20110298506
    Abstract: An integrated circuit comprises frequency generation circuitry for controlling a frequency source for use in an automotive radar system. The frequency generation circuitry comprises low-path modulation circuitry arranged to generate a first, low-path control signal for providing lower frequency modulation of the frequency source, the low-path modulation circuitry comprising a Phase Locked Loop (PLL) arranged to generate the low-path control signal for controlling the frequency source and a fractional-N divider located within a feedback loop of the PLL, and frequency pattern control module operably coupled to the fractional-N divider and arranged to control the fractional-N divider, by way of at least a first, lower frequency pattern control signal. The frequency generation circuitry further comprises high-path modulation circuitry arranged to generate a second, high-path control signal for providing higher frequency modulation of the frequency source.
    Type: Application
    Filed: February 10, 2010
    Publication date: December 8, 2011
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Didier Salle, Olivier Doare, Stephane Dugalleix
  • Publication number: 20110285575
    Abstract: An integrated circuit comprises frequency generation circuitry for controlling a frequency source for an automotive radar system. The frequency generation circuitry comprises a Phase Locked Loop (PLL) arranged to generate a control signal for controlling the frequency source, a fractional-N divider located within a feedback loop of the PLL, and frequency pattern control logic operably coupled to the fractional-N divider and arranged to control the fractional-N divider, by way of a frequency control signal, such that the PLL generates a Frequency Modulated Continuous Wave (FMCW) control signal.
    Type: Application
    Filed: February 13, 2009
    Publication date: November 24, 2011
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Christophe Landez, Hugues Beaulaton, Thierry Cassagnes, Stephane Colomines, Robert G. Gach, Akbar Ghazinour, Hao Li, Gilles Montoriol, Didier Salle, Pierre Savary
  • Publication number: 20100184389
    Abstract: A wireless communication unit (100) comprises a transmitter (120) arranged to transmit an envelope modulated signal. The transmitter (120) comprises a radio frequency power amplifier (124) operably coupled to a logarithmic detector (210, 310) and a bias control circuit (126) arranged to set a direct current bias level of the radio frequency power amplifier (124) via a bias signal. The logarithmic detector (210, 310) is arranged to detect the envelope modulated signal and provide the detected envelope modulated signal to the bias control circuit such that the bias signal applied to the radio frequency power amplifier (124) comprises both a direct current and a low frequency component based on the detected envelope modulated signal. In this manner, the present invention supports a tradeoff of linearity for additional efficiency, as well as providing more margin on adjacent channel power levels, whilst maintaining a good overall power added efficiency.
    Type: Application
    Filed: August 9, 2005
    Publication date: July 22, 2010
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Frederic Fraysse, Gilles Montoriol, Didier Salle