Patents by Inventor Dirk Robert Walter Leipold

Dirk Robert Walter Leipold has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10800654
    Abstract: Novel and useful quantum structures that provide various control functions. Particles are brought into close proximity to interact with one another and exchange information. After entanglement, the particles are moved away from each other but they still carry the information contained initially. Measurement and detection are performed on the particles from the entangled ensemble to determine whether the particle is present or not in a given qdot. A quantum interaction gate is a circuit or structure operating on a relatively small number of qubits. Quantum interaction gates implement several quantum functions including a controlled NOT gate, quantum annealing gate, controlled SWAP gate, a controlled Pauli rotation gate, and ancillary gate. These quantum interaction gates can have numerous shapes including double V shape, H shape, X shape, L shape, I shape, etc.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: October 13, 2020
    Assignee: Equal1.Labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Patent number: 10793431
    Abstract: Novel and useful quantum structures that provide various control functions. Particles are brought into close proximity to interact with one another and exchange information. After entanglement, the particles are moved away from each other but they still carry the information contained initially. Measurement and detection are performed on the particles from the entangled ensemble to determine whether the particle is present or not in a given qdot. A quantum interaction gate is a circuit or structure operating on a relatively small number of qubits. Quantum interaction gates implement several quantum functions including a controlled NOT gate, quantum annealing gate, controlled SWAP gate, a controlled Pauli rotation gate, and ancillary gate. These quantum interaction gates can have numerous shapes including double V shape, H shape, X shape, L shape, I shape, etc.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: October 6, 2020
    Assignee: Equal1.Labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Patent number: 10796835
    Abstract: Embodiments of electronic devices, such as integrated circuit (IC) packages are disclosed. In one embodiment, an electronic device includes a first substrate and a second substrate. The first substrate has a first substrate body and a first inductor portion integrated into the first substrate body. Additionally, the second substrate comprises a second substrate body and a second inductor portion integrated into the second substrate body. The second substrate is mounted on the first substrate such that such that the second inductor portion is positioned over the first inductor portion and such that the second inductor portion is electrically connected to the first inductor portion so that the first inductor portion and the second inductor portion form a three dimensional (3D) inductor. By using two substrates, the 3D inductor can be increased in height while still allowing the substrates to be miniaturized and standardized for an IC package.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: October 6, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Michael F. Zybura, George Maxim, Dirk Robert Walter Leipold, John August Orlowski, Baker Scott
  • Patent number: 10784149
    Abstract: The present disclosure relates to an air-cavity module having a thinned semiconductor die and a mold compound. The thinned semiconductor die includes a back-end-of-line (BEOL) layer, an epitaxial layer over the BEOL layer, and a buried oxide (BOX) layer with discrete holes over the epitaxial layer. The epitaxial layer includes an air-cavity, a first device section, and a second device section. Herein, the air-cavity is in between the first device section and the second device section and directly in connection with each discrete hole in the BOX layer. The mold compound resides directly over at least a portion of the BOX layer, within which the discrete holes are located. The mold compound does not enter into the air-cavity through the discrete holes.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: September 22, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Julio C. Costa, George Maxim, Dirk Robert Walter Leipold, Baker Scott
  • Patent number: 10756675
    Abstract: A broadband power amplifier circuit is provided. The broadband power amplifier circuit includes an amplifier circuit configured to amplify a radio frequency (RF) signal to an output power based on a bias voltage and a supply voltage. Given that the output power of the RF signal may rise and fall from time to time, the broadband power amplifier circuit is configured to opportunistically increase or decrease the bias voltage in a defined future time (e.g., a future time slot or a future symbol duration) based on the output power in the defined future time. When necessary, the broadband power amplifier may be further configured to adjust the supply voltage and/or attenuate the RF signal based on the output power. As such, it may be possible to maintain class-A operation mode for the amplifier circuit. As a result, the amplifier circuit may maintain linearity and avoid memory effect with improved efficiency.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: August 25, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Dirk Robert Walter Leipold, Baker Scott, Toshiaki Moriuchi, George Maxim
  • Patent number: 10742253
    Abstract: A radio frequency (RF) front-end apparatus is provided. In examples discussed herein, the RF front-end apparatus can be configured to communicate RF signals in millimeter wave (mmWave) RF frequencies (e.g., ?12 GHz). The RF front-end apparatus includes an RF front-end circuit and an antenna element. The RF front-end circuit includes a transmit path and a receive path for transmitting and receiving RF signals, respectively. The antenna element includes an input port(s) and an output port(s) that are coupled to the transmit path and the receive path, respectively. The antenna element can be configured to enable impedance matching between the input port(s) and the transmit path, as well as between the output port(s) and the receive path. As a result, it may be possible to reduce insertion losses in the RF front-end circuit, thus helping to improve performance of the RF front-end apparatus, particularly in support of mmWave communications.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: August 11, 2020
    Assignee: Qorvo US, Inc.
    Inventors: George Maxim, Dirk Robert Walter Leipold, Wolfram C. Stiebler
  • Publication number: 20200227523
    Abstract: Novel and useful semiconductor structures using preferential tunneling through thin insulator layers. Semiconductor quantum structures are implemented using tunneling through a thin oxide layer. The quantum dots are fabricated with semiconductor wells, 3D fins or combinations thereof, while the tunneling path and any optional quantum transport path is implemented with gate layers. The oxide layer between the gate and the well is thin enough in the nanometer semiconductor processes to permit significant tunneling. Having a thin oxide layer on only one side of the well, while having thick oxide layers on all other sides, results in a preferential tunneling direction where tunneling is restricted to a small area resulting in aperture tunneling. The advantage being constraining quantum transport to a very narrow path, which can be approximated as unidimensional. In alternative embodiments, more than one preferential tunneling direction may be used. These techniques can be used in both planar and 3D (e.g.
    Type: Application
    Filed: January 20, 2020
    Publication date: July 16, 2020
    Applicant: equal1.labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Publication number: 20200227522
    Abstract: A novel and useful modified semiconductor process having staircase active well shapes that provide variable distances between pairs of locations (i.e. quantum dots) resulting in modulation of the quantum interaction strength from weak/negligible at large separations to moderate and then strong at short separations. To achieve a modulation of the distance between pairs of locations, diagonal, lateral, and vertical quantum particle/state transport is employed. As examples, both implementations of semiconductor quantum structures with tunneling through an oxide layer and with tunneling through a local well depleted region are disclosed. These techniques are applicable to both planar semiconductor processes and 3D (e.g. Fin-FET) semiconductor processes. Optical proximity correction is used to accommodate the staircase well layers. Each gate control circuit in the imposer circuitry functions to control more than one set of control gates.
    Type: Application
    Filed: January 13, 2020
    Publication date: July 16, 2020
    Applicant: equal1.labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Patent number: 10715133
    Abstract: A radio frequency switch having an N number of switch cells coupled in series is disclosed. Each of the switch cells includes a field-effect transistor (FET), wherein a source of switch cell 1 is coupled to a first port, a drain of switch cell N is coupled to a second port, and a drain of switch cell X is coupled to a source of switch cell X+1 for switch cell 1 through switch cell N. A first diode stack has a first anode coupled to the body of switch cell X and a first cathode coupled to a drain of switch cell X+1 for switch cell 1 through switch cell N?1, and a second diode stack has a second anode coupled to the body of switch cell X and a second cathode coupled to the source of switch cell X?1 for switch cell 2 through switch cell N.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: July 14, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Baker Scott, George Maxim, Hideya Oshima, Dirk Robert Walter Leipold
  • Publication number: 20200220065
    Abstract: A novel and useful modified semiconductor fabrication technique for realizing reliable semiconductor quantum structures. Quantum structures require a minimization of the parasitic capacitance of the control gate and the quantum well. The modified semiconductor process eliminates the fabrication of the metal, contact, and optionally the raised diffusion layers from the quantum wells, thereby resulting in much lower well and gate capacitances and therefore larger Coulomb blockade voltages. This allows easier implementation of the electronic control circuits in that they can have larger intrinsic noise and relaxed analog resolution. Several processes are disclosed including implementations of semiconductor quantum structures with tunneling through an oxide layer as well as tunneling through a local well depleted region. These techniques can be used in both planar semiconductor processes and 3D, e.g., FinFET, semiconductor processes. A dedicated process masking step is used for realizing the raised diffusions.
    Type: Application
    Filed: January 5, 2020
    Publication date: July 9, 2020
    Applicant: equal1.labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Patent number: 10707095
    Abstract: The present disclosure relates to a semiconductor package with reduced parasitic coupling effects, and a process for making the same. The disclosed semiconductor package includes a thinned flip-chip die and a first mold compound component with a dielectric constant no more than 7. The thinned flip-chip die includes a back-end-of-line (BEOL) layer with an upper surface that includes a first surface portion and a second surface portion surrounding the first surface portion, a device layer over the upper surface of the BEOL layer, and a buried oxide (BOX) layer over the device layer. The BEOL layer includes a first passive device and a second passive device, which are underlying the first surface portion and not underlying the second surface portion. Herein, the first mold compound component extends through the BOX layer and the device layer to the first surface portion.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: July 7, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Julio C. Costa, George Maxim, Dirk Robert Walter Leipold, Baker Scott
  • Patent number: 10692645
    Abstract: A coupled inductor structure includes a first three-dimensional inductor structure and a second three-dimensional folded inductor structure. At least a portion of the first three-dimensional folded inductor structure is located within a volume bounded by the second three-dimensional folded inductor structure. By nesting the first three-dimensional folded inductor structure within the second three-dimensional folded inductor structure, a variety of coupling factors can be achieved while minimizing the size of the coupled inductor structure.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: June 23, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Dirk Robert Walter Leipold, George Maxim, Marcus Granger-Jones, Baker Scott
  • Patent number: 10680565
    Abstract: A power amplifier system is disclosed. The power amplifier system includes a power amplifier having a first signal input and a first signal output and a main bias circuitry configured to provide a first portion of a first bias signal to the power amplifier through a first bias output coupled to the first signal input. Further included is peak bias circuitry that is configured to provide a second portion of the first bias signal to the power amplifier through a second bias output coupled to the first signal input, wherein the first portion of the first bias signal is greater than the second portion of the first bias signal over a first input power range and the second portion of the first bias signal is greater than the first portion of the first bias signal over a second input power range that is greater than the first input power range.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: June 9, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Baker Scott, Hideya Oshima, George Maxim, Dirk Robert Walter Leipold
  • Publication number: 20200169223
    Abstract: A broadband power amplifier circuit is provided. The broadband power amplifier circuit includes an amplifier circuit configured to amplify a radio frequency (RF) signal to an output power based on a bias voltage and a supply voltage. Given that the output power of the RF signal may rise and fall from time to time, the broadband power amplifier circuit is configured to opportunistically increase or decrease the bias voltage in a defined future time (e.g., a future time slot or a future symbol duration) based on the output power in the defined future time. When necessary, the broadband power amplifier may be further configured to adjust the supply voltage and/or attenuate the RF signal based on the output power. As such, it may be possible to maintain class-A operation mode for the amplifier circuit. As a result, the amplifier circuit may maintain linearity and avoid memory effect with improved efficiency.
    Type: Application
    Filed: November 28, 2018
    Publication date: May 28, 2020
    Inventors: Dirk Robert Walter Leipold, Baker Scott, Toshiaki Moriuchi, George Maxim
  • Publication number: 20200161456
    Abstract: Novel and useful quantum structures having a continuous fully depleted well with control gates that form two quantum dot on either side of the gate. Appropriate potentials are applied to the well and control gate to control quantum tunneling between quantum dots thereby enabling quantum operations to occur. Qubits are realized by modulating applied gate potential to control tunneling through a quantum transport path between two or more sections of the well. Complex structures with a higher number of quantum dots per continuous well and a larger number of wells can be fabricated. Both planar and 3D FinFET semiconductor processes are used to build well to gate and well to well tunneling quantum structures. An injection device permits tunneling of a single quantum particle from a classic side to a quantum side of the device. Detection interface devices detect the presence or absence of a particle destructively or nondestructively.
    Type: Application
    Filed: January 20, 2020
    Publication date: May 21, 2020
    Applicant: equal1.labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Publication number: 20200160205
    Abstract: A novel and useful fully integrated quantum computer containing both quantum core circuitry and associated classical electronic control circuits on the same monolithic die. The integrated quantum computer avoids ESD loading on the quantum structures and minimizes the need for long interconnects with resultant large parasitic inductances and capacitances. Such parasitics reduce the maximum operating frequency of the realized quantum core structures. A cryostat unit functions to provide several temperatures to the quantum computer including a temperature to cool the quantum core to approximately 4° K and the interface SoC to 77° K. Alternatively, the interface circuitry is also integrated with the main QPU on the same die. A programmable pattern generator executes sequences of instructions that control the quantum core. In accordance with the sequences, a pulse generator functions to generate the control signals that are input to the quantum core to perform quantum operations.
    Type: Application
    Filed: January 5, 2020
    Publication date: May 21, 2020
    Applicant: equal1.labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Patent number: 10658202
    Abstract: The present disclosure relates to a semiconductor package with reduced parasitic coupling effects, and a process for making the same. The disclosed semiconductor package includes a thinned flip-chip die and a first mold compound component with a dielectric constant no more than 7. The thinned flip-chip die includes a back-end-of-line (BEOL) layer with an upper surface that includes a first surface portion and a second surface portion surrounding the first surface portion, a device layer over the upper surface of the BEOL layer, and a buried oxide (BOX) layer over the device layer. The BEOL layer includes a first passive device and a second passive device, which are underlying the first surface portion and not underlying the second surface portion. Herein, the first mold compound component extends through the BOX layer and the device layer to the first surface portion.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: May 19, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Julio C. Costa, George Maxim, Dirk Robert Walter Leipold, Baker Scott
  • Publication number: 20200152776
    Abstract: A novel and useful modified semiconductor process having staircase active well shapes that provide variable distances between pairs of locations (i.e. quantum dots) resulting in modulation of the quantum interaction strength from weak/negligible at large separations to moderate and then strong at short separations. To achieve a modulation of the distance between pairs of locations, diagonal, lateral, and vertical quantum particle/state transport is employed. As examples, both implementations of semiconductor quantum structures with tunneling through an oxide layer and with tunneling through a local well depleted region are disclosed. These techniques are applicable to both planar semiconductor processes and 3D (e.g. Fin-FET) semiconductor processes. Optical proximity correction is used to accommodate the staircase well layers. Each gate control circuit in the imposer circuitry functions to control more than one set of control gates.
    Type: Application
    Filed: January 13, 2020
    Publication date: May 14, 2020
    Applicant: equal1.labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Patent number: 10630248
    Abstract: A low-noise amplifier system is disclosed. The low-noise amplifier system includes a low-noise amplifier having an input node and an output node in a receive path and a capacitance equalization network coupled to the output node. Compensation capacitance of the capacitance equalization network sums with non-linear capacitance of the low-noise amplifier such that a total capacitance at the output node varies by no more than ±5% over an output voltage range within voltage headroom limits of the low-noise amplifier for a given supply voltage of the low-noise amplifier. In at least some exemplary embodiments, the compensation capacitance of the capacitance equalization network is a function of output signal voltage at the output node.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: April 21, 2020
    Assignee: Qorvo US, Inc.
    Inventors: George Maxim, Marcus Granger-Jones, Dirk Robert Walter Leipold, Baker Scott
  • Patent number: 10622309
    Abstract: The present disclosure relates to a transmission line structure embedded in a back-end-of-line (BEOL) body that has a cavity. The transmission line structure includes a signal transmission line, a ground plane and a shielding line. The signal transmission line and the first shielding line are formed on a same metallization level, and the ground plane is formed underneath and electrically connected to the first shielding line. A side surface of the signal transmission line and a side surface of the first shielding line, which faces the side surface of the signal transmission line, are exposed to the cavity of the BEOL body, and not covered by any high resistivity conductive coating.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: April 14, 2020
    Assignee: Qorvo US, Inc.
    Inventors: George Maxim, Dirk Robert Walter Leipold, Julio C. Costa, Baker Scott, Danny W. Chang