Patents by Inventor Dirk Robert Walter Leipold

Dirk Robert Walter Leipold has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190392336
    Abstract: Novel and useful quantum structures having a continuous well with control gates that control a local depletion region to form quantum dots. Local depleted well tunneling is used to control quantum operations to implement quantum computing circuits. Qubits are realized by modulating gate potential to control tunneling through local depleted region between two or more sections of the well. Complex structures with a higher number of qdots per continuous well and a larger number of wells are fabricated. Both planar and 3D FinFET semiconductor processes are used to build well to gate and well to well tunneling quantum structures. Combining a number of elementary quantum structure, a quantum computing machine is realized. An interface device provides an interface between classic circuitry and quantum circuitry by permitting tunneling of a single quantum particle from the classic side to the quantum side of the device.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 26, 2019
    Applicant: equal1.labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Publication number: 20190392338
    Abstract: Novel and useful electronic and magnetic control of several quantum structures that provide various control functions. An electric field provides control and is created by a voltage applied to a control terminal. Alternatively, an inductor or resonator provides control. An electric field functions as the main control and an auxiliary magnetic field provides additional control on the control gate. The magnetic field is used to control different aspects of the quantum structure. The magnetic field impacts the spin of the electron by tending to align to the magnetic field. The Bloch sphere is a geometrical representation of the state of a two-level quantum system and defined by a vector in x, y, z spherical coordinates.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 26, 2019
    Applicant: equal1.labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Publication number: 20190393398
    Abstract: Novel and useful quantum structures that provide various control functions. Particles are brought into close proximity to interact with one another and exchange information. After entanglement, the particles are moved away from each other but they still carry the information contained initially. Measurement and detection are performed on the particles from the entangled ensemble to determine whether the particle is present or not in a given qdot. A quantum interaction gate is a circuit or structure operating on a relatively small number of qubits. Quantum interaction gates implement several quantum functions including a controlled NOT gate, quantum annealing gate, controlled SWAP gate, a controlled Pauli rotation gate, and ancillary gate. These quantum interaction gates can have numerous shapes including double V shape, H shape, X shape, L shape, I shape, etc.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 26, 2019
    Applicant: equal1.labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Publication number: 20190393329
    Abstract: Novel and useful quantum structures having a continuous well with control gates that control a local depletion region to form quantum dots. Local depleted well tunneling is used to control quantum operations to implement quantum computing circuits. Qubits are realized by modulating gate potential to control tunneling through local depleted region between two or more sections of the well. Complex structures with a higher number of qdots per continuous well and a larger number of wells are fabricated. Both planar and 3D FinFET semiconductor processes are used to build well to gate and well to well tunneling quantum structures. Combining a number of elementary quantum structure, a quantum computing machine is realized. An interface device provides an interface between classic circuitry and quantum circuitry by permitting tunneling of a single quantum particle from the classic side to the quantum side of the device.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 26, 2019
    Applicant: equal1.labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Publication number: 20190392917
    Abstract: A novel and useful controlled quantum shift register for transporting particles from one quantum dot to another in a quantum structure. The shift register incorporates a succession of qdots with tunneling paths and control gates. Applying appropriate control signals to the control gates, a particle or a split quantum state is made to travel along the shift register. The shift register also includes ancillary double interaction where two pairs of quantum dots provide an ancillary function where the quantum state of one pair is replicated in the second pair. The shift register also provides bifurcation where an access path is split into two or more paths. Depending on the control pulse signals applied, quantum dots are extended into multiple paths. Control of the shift register is provided by electric control pulses. An optional auxiliary magnetic field provides additional control of the shift register.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 26, 2019
    Applicant: equal1.labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Publication number: 20190392337
    Abstract: Novel and useful quantum structures having a continuous well with control gates that control a local depletion region to form quantum dots. Local depleted well tunneling is used to control quantum operations to implement quantum computing circuits. Qubits are realized by modulating gate potential to control tunneling through local depleted region between two or more sections of the well. Complex structures with a higher number of qdots per continuous well and a larger number of wells are fabricated. Both planar and 3D FinFET semiconductor processes are used to build well to gate and well to well tunneling quantum structures. Combining a number of elementary quantum structure, a quantum computing machine is realized. An interface device provides an interface between classic circuitry and quantum circuitry by permitting tunneling of a single quantum particle from the classic side to the quantum side of the device.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 26, 2019
    Applicant: equal1.labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Publication number: 20190393399
    Abstract: Novel and useful quantum structures that provide various control functions. Particles are brought into close proximity to interact with one another and exchange information. After entanglement, the particles are moved away from each other but they still carry the information contained initially. Measurement and detection are performed on the particles from the entangled ensemble to determine whether the particle is present or not in a given qdot. A quantum interaction gate is a circuit or structure operating on a relatively small number of qubits. Quantum interaction gates implement several quantum functions including a controlled NOT gate, quantum annealing gate, controlled SWAP gate, a controlled Pauli rotation gate, and ancillary gate. These quantum interaction gates can have numerous shapes including double V shape, H shape, X shape, L shape, I shape, etc.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 26, 2019
    Applicant: equal1.labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Publication number: 20190392913
    Abstract: A novel and useful controlled quantum shift register for transporting particles from one quantum dot to another in a quantum structure. The shift register incorporates a succession of qdots with tunneling paths and control gates. Applying appropriate control signals to the control gates, a particle or a split quantum state is made to travel along the shift register. The shift register also includes ancillary double interaction where two pairs of quantum dots provide an ancillary function where the quantum state of one pair is replicated in the second pair. The shift register also provides bifurcation where an access path is split into two or more paths. Depending on the control pulse signals applied, quantum dots are extended into multiple paths. Control of the shift register is provided by electric control pulses. An optional auxiliary magnetic field provides additional control of the shift register.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 26, 2019
    Applicant: equal1.labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Publication number: 20190392342
    Abstract: A novel and useful quantum computing machine architecture that includes a classic computing core as well as a quantum computing core. A programmable pattern generator executes sequences of instructions that control the quantum core. In accordance with the sequences, a pulse generator functions to generate the control signals that are input to the quantum core to perform quantum operations. A partial readout of the quantum state in the quantum core is generated that is subsequently re-injected back into the quantum core to extend decoherence time. Access gates control movement of quantum particles in the quantum core. Errors are corrected from the partial readout before being re-injected back into the quantum core. Internal and external calibration loops calculate error syndromes and calibrate the control pulses input to the quantum core.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 26, 2019
    Applicant: equal1.labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Publication number: 20190393397
    Abstract: Novel and useful quantum structures having a continuous well with control gates that control a local depletion region to form quantum dots. Local depleted well tunneling is used to control quantum operations to implement quantum computing circuits. Qubits are realized by modulating gate potential to control tunneling through local depleted region between two or more sections of the well. Complex structures with a higher number of qdots per continuous well and a larger number of wells are fabricated. Both planar and 3D FinFET semiconductor processes are used to build well to gate and well to well tunneling quantum structures. Combining a number of elementary quantum structure, a quantum computing machine is realized. An interface device provides an interface between classic circuitry and quantum circuitry by permitting tunneling of a single quantum particle from the classic side to the quantum side of the device.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 26, 2019
    Applicant: equal1.labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Publication number: 20190392339
    Abstract: Novel and useful electronic and magnetic control of several quantum structures that provide various control functions. An electric field provides control and is created by a voltage applied to a control terminal. Alternatively, an inductor or resonator provides control. An electric field functions as the main control and an auxiliary magnetic field provides additional control on the control gate. The magnetic field is used to control different aspects of the quantum structure. The magnetic field impacts the spin of the electron by tending to align to the magnetic field. The Bloch sphere is a geometrical representation of the state of a two-level quantum system and defined by a vector in x, y, z spherical coordinates.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 26, 2019
    Applicant: equal1.labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Publication number: 20190392912
    Abstract: A novel and useful controlled quantum shift register for transporting particles from one quantum dot to another in a quantum structure. The shift register incorporates a succession of qdots with tunneling paths and control gates. Applying appropriate control signals to the control gates, a particle or a split quantum state is made to travel along the shift register. The shift register also includes ancillary double interaction where two pairs of quantum dots provide an ancillary function where the quantum state of one pair is replicated in the second pair. The shift register also provides bifurcation where an access path is split into two or more paths. Depending on the control pulse signals applied, quantum dots are extended into multiple paths. Control of the shift register is provided by electric control pulses. An optional auxiliary magnetic field provides additional control of the shift register.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 26, 2019
    Applicant: equal1.labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Publication number: 20190393328
    Abstract: Novel and useful quantum structures having a continuous well with control gates that control a local depletion region to form quantum dots. Local depleted well tunneling is used to control quantum operations to implement quantum computing circuits. Qubits are realized by modulating gate potential to control tunneling through local depleted region between two or more sections of the well. Complex structures with a higher number of qdots per continuous well and a larger number of wells are fabricated. Both planar and 3D FinFET semiconductor processes are used to build well to gate and well to well tunneling quantum structures. Combining a number of elementary quantum structure, a quantum computing machine is realized. An interface device provides an interface between classic circuitry and quantum circuitry by permitting tunneling of a single quantum particle from the classic side to the quantum side of the device.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 26, 2019
    Applicant: equal1.labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Publication number: 20190393330
    Abstract: Novel and useful quantum structures that provide various control functions. Particles are brought into close proximity to interact with one another and exchange information. After entanglement, the particles are moved away from each other but they still carry the information contained initially. Measurement and detection are performed on the particles from the entangled ensemble to determine whether the particle is present or not in a given qdot. A quantum interaction gate is a circuit or structure operating on a relatively small number of qubits. Quantum interaction gates implement several quantum functions including a controlled NOT gate, quantum annealing gate, controlled SWAP gate, a controlled Pauli rotation gate, and ancillary gate. These quantum interaction gates can have numerous shapes including double V shape, H shape, X shape, L shape, I shape, etc.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 26, 2019
    Applicant: equal1.labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Publication number: 20190393923
    Abstract: A radio frequency (RF) front-end apparatus is provided. In examples discussed herein, the RF front-end apparatus can be configured to communicate RF signals in millimeter wave (mmWave) RF frequencies (e.g., ?12 GHz). The RF front-end apparatus includes an RF front-end circuit and an antenna element. The RF front-end circuit includes a transmit path and a receive path for transmitting and receiving RF signals, respectively. The antenna element includes an input port(s) and an output port(s) that are coupled to the transmit path and the receive path, respectively. The antenna element can be configured to enable impedance matching between the input port(s) and the transmit path, as well as between the output port(s) and the receive path. As a result, it may be possible to reduce insertion losses in the RF front-end circuit, thus helping to improve performance of the RF front-end apparatus, particularly in support of mmWave communications.
    Type: Application
    Filed: August 31, 2018
    Publication date: December 26, 2019
    Inventors: George Maxim, Dirk Robert Walter Leipold, Wolfram C. Stiebler
  • Publication number: 20190393033
    Abstract: Novel and useful quantum structures that provide various control functions. Particles are brought into close proximity to interact with one another and exchange information. After entanglement, the particles are moved away from each other but they still carry the information contained initially. Measurement and detection are performed on the particles from the entangled ensemble to determine whether the particle is present or not in a given qdot. A quantum interaction gate is a circuit or structure operating on a relatively small number of qubits. Quantum interaction gates implement several quantum functions including a controlled NOT gate, quantum annealing gate, controlled SWAP gate, a controlled Pauli rotation gate, and ancillary gate. These quantum interaction gates can have numerous shapes including double V shape, H shape, X shape, L shape, I shape, etc.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 26, 2019
    Applicant: equal1.labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Publication number: 20190385791
    Abstract: This disclosure relates generally to substrates having three dimensional (3D) inductors and methods of manufacturing the same. In one embodiment, the 3D inductor is a solenoid inductor where the exterior edge contour of the winding ends is substantially the same and substantially aligned with the exterior edge contour of the exterior edge contour of conductive vias that connect the windings. In this manner, there is no overhang between the windings and the conductive vias. In another embodiment of the 3D inductor, via columns connect connector plates. The via column attachment surfaces of each of the conductive vias in each of the columns is the same and substantially aligned. In this manner, carrier pads are not needed and there is no overhand between the conductive vias.
    Type: Application
    Filed: August 29, 2019
    Publication date: December 19, 2019
    Inventors: Dirk Robert Walter Leipold, George Maxim, John August Orlowski, Baker Scott
  • Publication number: 20190379335
    Abstract: Doherty radio frequency (RF) amplifier circuitry includes an input node, an output node, a main amplifier path, and a peaking amplifier path. The main amplifier path is coupled between the input node and the output node and includes a main amplifier. The peaking amplifier path is coupled in parallel with the main amplifier path between the input node and the output node, and includes a peaking amplifier and a peaking variable gain preamplifier between the input node and the peaking amplifier. The peaking variable gain preamplifier is configured to adjust a current provided to the peaking amplifier.
    Type: Application
    Filed: June 10, 2019
    Publication date: December 12, 2019
    Inventors: Baker Scott, George Maxim, Dirk Robert Walter Leipold
  • Publication number: 20190378819
    Abstract: The present disclosure relates to a microelectronics package with vertically stacked flip-chip dies, and a process for making the same. The disclosed microelectronics package includes a module board, a first thinned flip-chip die with a through-die via, a second flip-chip die with a package contact at the bottom, and a mold compound. Herein, a top portion of the through-die via is exposed at top of the first thinned flip-chip die. The first thinned flip-chip die and the mold compound reside over the module substrate. The mold compound surrounds the first thinned flip-chip die and extends above the first thinned flip-chip die to define an opening. The second flip-chip die, which has a smaller plane size than the first thinned flip-chip die, resides within the opening and is stacked with the first thinned flip-chip die by coupling the package contact to the exposed top portion of the through-die via.
    Type: Application
    Filed: June 11, 2018
    Publication date: December 12, 2019
    Inventors: Julio C. Costa, Robert Aigner, Gernot Fattinger, Dirk Robert Walter Leipold, George Maxim, Baker Scott, Merrill Albert Hatcher, JR., Jon Chadwick
  • Publication number: 20190378821
    Abstract: The present disclosure relates to a microelectronics package with vertically stacked flip-chip dies, and a process for making the same. The disclosed microelectronics package includes a module board, a first thinned flip-chip die with a through-die via, a second flip-chip die with a package contact at the bottom, and a mold compound. Herein, a top portion of the through-die via is exposed at top of the first thinned flip-chip die. The first thinned flip-chip die and the mold compound reside over the module substrate. The mold compound surrounds the first thinned flip-chip die and extends above the first thinned flip-chip die to define an opening. The second flip-chip die, which has a smaller plane size than the first thinned flip-chip die, resides within the opening and is stacked with the first thinned flip-chip die by coupling the package contact to the exposed top portion of the through-die via.
    Type: Application
    Filed: July 31, 2019
    Publication date: December 12, 2019
    Inventors: Julio C. Costa, Robert Aigner, Gernot Fattinger, Dirk Robert Walter Leipold, George Maxim, Baker Scott, Merrill Albert Hatcher, JR., Jon Chadwick