Patents by Inventor Donald E. Ingber

Donald E. Ingber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220145266
    Abstract: Described herein are methods for providing an in vitro intestinal model system, e.g., using primary cells instead of cell lines and/or cancerous cells.
    Type: Application
    Filed: December 1, 2021
    Publication date: May 12, 2022
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Donald E. INGBER, Magdalena KASENDRA, Alexandra SONTHEIMER-PHELPS, Alessio TOVAGLIERI
  • Patent number: 11325119
    Abstract: A fluidic device includes a fluidic layer, a capture material, and an electronics layer, the fluidic layer includes a main channel and a pair of sample channels fluidly coupled to the main channel. The pair of sample channels is configured to receive and introduce a sample material into the device. The sample material includes an analyte. The capture material is positioned in a portion of the main channel that is spaced from the pair of sample channels. The capture material has a three-dimensional matrix of receptors therein configured to bond with the analyte. The capture material has a length that is associated with a dynamic range of the fluidic device and a cross-sectional area that is associated with a sensitivity of the fluidic device. The electronics layer includes electrodes configured to measure an electrical resistance through a portion of the capture material.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: May 10, 2022
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Carlos Francisco NG Pitti, Ulri Nicole Lee, Richard Novak, Olivier Yves Frederic Henry, Remco Van Erp, Donald E. Ingber
  • Patent number: 11312949
    Abstract: Described herein are heme-binding compositions and methods relating to their use, for example methods of treatment of sepsis and rhabdomyolysis.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: April 26, 2022
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Michael Super, Alexander L. Watters, Philip T. Snell, Donald E. Ingber
  • Publication number: 20220089989
    Abstract: Systems and methods for producing and using a body having a first structure defining a first chamber, a second structure defining a second chamber, a membrane located at an interface region between the first chamber and the second chamber to separate the first chamber from the second chamber. The first chamber comprises a first permeable matrix disposed therein and the first permeable matrix comprises at least one or a plurality of lumens each extending therethrough, which is optionally lined with at least one layer of cells. The second chamber can comprise cells cultured therein. The systems and methods described herein can be used for various applications, including, e.g., growth and/or differentiation of primary cells, and/or simulation of a microenvironment in living tissues and/or organs (to model physiology or disease states, and/or to identify therapeutic agents). The systems and methods can also permit co-cultures of two or more different cell types.
    Type: Application
    Filed: December 2, 2021
    Publication date: March 24, 2022
    Inventors: Donald E. Ingber, Andries Van der Meer, Anna Herland
  • Publication number: 20220074936
    Abstract: The disclosure provides methods, compositions, and kits for enhanced detection of microbes in samples and monitoring of antimicrobial activity in a subject.
    Type: Application
    Filed: November 17, 2021
    Publication date: March 10, 2022
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Mark J. CARTWRIGHT, Nazita GAMINI, Donald E. INGBER, Martin M. ROTTMAN, Michael SUPER, Julie A. TOMOLONIS, Karen A. SINCLAIR
  • Publication number: 20220056089
    Abstract: The present invention provides for engineered molecular opsonins that may be used to bind biological pathogens or identify subclasses or specific pathogen species for use in devices and systems for treatment and diagnosis of patients with infectious diseases, blood-borne infections or sepsis. An aspect of the invention provides for mannose-binding lectin (MBL), which is an abundant natural serum protein that is part of the innate immune system. The ability of this protein lectin to bind to surface molecules on virtually all classes of biopathogens (viruses, bacteria, fungi, protozoans) make engineered forms of MBL extremely useful in diagnosing and treating infectious diseases and sepsis.
    Type: Application
    Filed: November 9, 2021
    Publication date: February 24, 2022
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Michael SUPER, Jeffrey Charles WAY, Donald E. INGBER
  • Patent number: 11236149
    Abstract: Described herein are engineered microbe-targeting molecules, microbe-targeting articles, kits comprising the same, and uses thereof. Such microbe-targeting molecules, microbe-targeting articles, or the kits comprising the same can not only bind or capture of a microbe or microbial matter thereof, but they also have improved capability (e.g., enhanced sensitivity or signal intensity) of detecting a microbe or microbial matter. Thus, the microbe-targeting molecules, microbe-targeting articles, and/or the kit described herein can be used in various applications, e.g., but not limited to assays for detection of a microbe or microbial matter, diagnostic and/or therapeutic agents for diagnosis and/or treatment of an infection caused by microbes in a subject or any environmental surface, and/or devices for removal of a microbe or microbial matter from a fluid.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: February 1, 2022
    Assignee: PRESIDENT AND FALLOWS OF HARVARD COLLEGE
    Inventors: Alexander Watters, Brendon Dusel, Michael Super, Mark Cartwright, Donald E. Ingber
  • Patent number: 11236147
    Abstract: TRPV4 activation increases vascular permeability and can be triggered by both chemical and mechanical cues. This activation of TRPV4 can contribute to a number of pathological conditions, e.g., edema, inflammation, hypertension, and/or hyperalgesia. Described herein are methods and compositions relating to inhibition of mechanically-induced TRPV4 activation, e.g., for the treatment of pulmonary edema, edema, inflammation, hypertension, and/or hyperalgesia.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: February 1, 2022
    Assignee: CHILDREN'S MEDICAL CENTER CORPORATION
    Inventors: Donald E. Ingber, Mariko Kobayashi
  • Publication number: 20220026420
    Abstract: Embodiments of various aspects described herein are directed to methods, compositions, kits for detecting a target molecule in a sample. In particular, there is described herein a multivalent approach which provides an efficient method for detection of small molecules and screening of binding molecules (e.g., antibodies). The multivalent approach uses two or more small molecules in a domain that is attached to a substrate through a linking group. The multivalent domain is free to extend, e.g., into a solution, for presentation to a binding compound such as an antibody.
    Type: Application
    Filed: November 15, 2019
    Publication date: January 27, 2022
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Pawan JOLLY, Nur MUSTAFAOGLU, Oliver Yves Frederic HENRY, Donald E. INGBER
  • Patent number: 11229910
    Abstract: Described herein are microfluidic devices and systems for high density cell culture and/or high throughput cell assays. Methods of using the same are also provided herein. In some embodiments, the microfluidic devices and systems described herein provide rapid and automated trapping of single embryos in ordered arrays.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: January 25, 2022
    Assignees: President and Fellows of Harvard College, Tufts University
    Inventors: Richard Novak, Donald E. Ingber, Michael Levin, Rachelle Prantil-Baun
  • Patent number: 11209432
    Abstract: The disclosure provides methods, compositions, and kits for enhanced detection of microbes in samples and monitoring of antimicrobial activity in a subject.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: December 28, 2021
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Mark J. Cartwright, Nazita Gamini, Donald E. Ingber, Martin Rottman, Michael Super, Julie A. Tomolonis, Karen A. Sinclair
  • Patent number: 11203623
    Abstract: The present invention provides for engineered molecular opsonins that may be used to bind biological pathogens or identify subclasses or specific pathogen species for use in devices and systems for treatment and diagnosis of patients with infectious diseases, blood-borne infections or sepsis. An aspect of the invention provides for mannose-binding lectin (MBL), which is an abundant natural serum protein that is part of the innate immune system. The ability of this protein lectin to bind to surface molecules on virtually all classes of biopathogens (viruses, bacteria, fungi, protozoans) make engineered forms of MBL extremely useful in diagnosing and treating infectious diseases and sepsis.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: December 21, 2021
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Michael Super, Jeffrey Charles Way, Donald E. Ingber
  • Publication number: 20210388301
    Abstract: The invention provides integrated Organ-on-Chip microphysiological systems representations of living Organs and support structures for such microphysiological systems.
    Type: Application
    Filed: January 11, 2021
    Publication date: December 16, 2021
    Inventors: Donald E. INGBER, Anthony BAHINSKI, Robert CUNNINGHAM, Josue A. GOSS, Geraldine A. HAMILTON, Christopher David HINOJOSA, Daniel LEVNER, Kevin Kit PARKER
  • Publication number: 20210364522
    Abstract: The invention relates to methods of detection, capture, isolation and targeting of cancer cells for example circulating tumor cells (CTCs) using carbohydrate recognition domain of a lectin. The invention relates to methods of diagnosis, prognosis and treatment of cancer.
    Type: Application
    Filed: August 4, 2021
    Publication date: November 25, 2021
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Joo-Hun KANG, Donald E. INGBER, Michael SUPER, Alexander L. WATTERS, Harry Scott DRISCOLL
  • Publication number: 20210338736
    Abstract: Embodiments of various aspects described herein relate to methods, kits, and cell culture media for generation of podocytes from pluripotent stem (PS) cells, as well as cells produced by the same, and methods of use.
    Type: Application
    Filed: July 2, 2021
    Publication date: November 4, 2021
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Donald E. INGBER, Samira MUSAH
  • Publication number: 20210322976
    Abstract: A fluidic device includes a fluidic layer, a capture material, and an electronics layer, the fluidic layer includes a main channel and a pair of sample channels fluidly coupled to the main channel. The pair of sample channels is configured to receive and introduce a sample material into the device. The sample material includes an analyte. The capture material is positioned in a portion of the main channel that is spaced from the pair of sample channels. The capture material has a three-dimensional matrix of receptors therein configured to bond with the analyte. The capture material has a length that is associated with a dynamic range of the fluidic device and a cross-sectional area that is associated with a sensitivity of the fluidic device. The electronics layer includes electrodes configured to measure an electrical resistance through a portion of the capture material.
    Type: Application
    Filed: March 14, 2018
    Publication date: October 21, 2021
    Inventors: Carlos Francisco NG Pitti, Ulri Nicole Lee, Richard Novack, Olivier Yves Frederic Henry, Remco Franciscus Peter Van Erp, Donald E. Ingber
  • Publication number: 20210299676
    Abstract: Disclosed herein is an improved method for magnetic capture of target molecules (e.g., microbes) in a fluid. Kits and solid substrates for carrying the method described herein are also provided. In some embodiments, the methods, kits, and solid substrates described herein are optimized for separation and/or detection of microbes and microbe-associated molecular pattern (MAMP) (including, e.g., but not limited to, a cell component of microbes, lipopolysaccharides (LPS), and/or endotoxin).
    Type: Application
    Filed: June 10, 2021
    Publication date: September 30, 2021
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Joo Hun KANG, Donald E. INGBER, Michael SUPER
  • Patent number: 11119093
    Abstract: Provided herein relates to systems and methods for producing and using a body having a central channel separated by one or more membranes. The membrane(s) are configured to divide the central channel into at least one mesochannel and at least one microchannel. The height of the mesochannel is substantially greater than the height of the microchannel. A gaseous fluid can be applied through the mesochannel while a liquid fluid flowing through the microchannel. The systems and methods described herein can be used for various applications, including, e.g., growth and differentiation of primary cells such as human lung cells, as well as any other cells requiring low shear and/also stratified structures, or simulation of a microenvironment in living tissues and/or organs (to model physiology or disease states, and/or to identify therapeutic agents and/or vaccines). The systems and methods can also permit co-culture with one or more different cell types.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: September 14, 2021
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Donald E. Ingber, Kambez Hajipouran Benam, Remi Villenave, Geraldine A. Hamilton, Bryan Hassell, Christopher D. Hinojosa, Carolina Lucchesi
  • Publication number: 20210277079
    Abstract: Described herein are engineered microbe-targeting molecules, microbe-targeting articles, kits comprising the same, and uses thereof. Such microbe-targeting molecules, microbe-targeting articles, or the kits comprising the same can bind or capture of a microbe or microbial matter thereof, and can thus be used in various applications, such as diagnosis or treatment of an infection caused by microbes in a subject or any environmental surface.
    Type: Application
    Filed: May 12, 2021
    Publication date: September 9, 2021
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Alexander L. WATTERS, Donald E. INGBER, Mark J. CARTWRIGHT, Michael SUPER, Martin ROTTMAN, Evangelia MURRAY, Brendon DUSEL
  • Patent number: 11112410
    Abstract: The invention relates to methods of detection, capture, isolation and targeting of cancer cells for example circulating tumor cells (CTCs) using carbohydrate recognition domain of a lectin. The invention relates to methods of diagnosis, prognosis and treatment of cancer.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: September 7, 2021
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Joo-Hun Kang, Donald E. Ingber, Michael Super, Alexander L. Watters, Harry Scott Driscoll