Patents by Inventor Donald E. Ingber

Donald E. Ingber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11229910
    Abstract: Described herein are microfluidic devices and systems for high density cell culture and/or high throughput cell assays. Methods of using the same are also provided herein. In some embodiments, the microfluidic devices and systems described herein provide rapid and automated trapping of single embryos in ordered arrays.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: January 25, 2022
    Assignees: President and Fellows of Harvard College, Tufts University
    Inventors: Richard Novak, Donald E. Ingber, Michael Levin, Rachelle Prantil-Baun
  • Patent number: 11209432
    Abstract: The disclosure provides methods, compositions, and kits for enhanced detection of microbes in samples and monitoring of antimicrobial activity in a subject.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: December 28, 2021
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Mark J. Cartwright, Nazita Gamini, Donald E. Ingber, Martin Rottman, Michael Super, Julie A. Tomolonis, Karen A. Sinclair
  • Patent number: 11203623
    Abstract: The present invention provides for engineered molecular opsonins that may be used to bind biological pathogens or identify subclasses or specific pathogen species for use in devices and systems for treatment and diagnosis of patients with infectious diseases, blood-borne infections or sepsis. An aspect of the invention provides for mannose-binding lectin (MBL), which is an abundant natural serum protein that is part of the innate immune system. The ability of this protein lectin to bind to surface molecules on virtually all classes of biopathogens (viruses, bacteria, fungi, protozoans) make engineered forms of MBL extremely useful in diagnosing and treating infectious diseases and sepsis.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: December 21, 2021
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Michael Super, Jeffrey Charles Way, Donald E. Ingber
  • Publication number: 20210388301
    Abstract: The invention provides integrated Organ-on-Chip microphysiological systems representations of living Organs and support structures for such microphysiological systems.
    Type: Application
    Filed: January 11, 2021
    Publication date: December 16, 2021
    Inventors: Donald E. INGBER, Anthony BAHINSKI, Robert CUNNINGHAM, Josue A. GOSS, Geraldine A. HAMILTON, Christopher David HINOJOSA, Daniel LEVNER, Kevin Kit PARKER
  • Publication number: 20210364522
    Abstract: The invention relates to methods of detection, capture, isolation and targeting of cancer cells for example circulating tumor cells (CTCs) using carbohydrate recognition domain of a lectin. The invention relates to methods of diagnosis, prognosis and treatment of cancer.
    Type: Application
    Filed: August 4, 2021
    Publication date: November 25, 2021
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Joo-Hun KANG, Donald E. INGBER, Michael SUPER, Alexander L. WATTERS, Harry Scott DRISCOLL
  • Publication number: 20210338736
    Abstract: Embodiments of various aspects described herein relate to methods, kits, and cell culture media for generation of podocytes from pluripotent stem (PS) cells, as well as cells produced by the same, and methods of use.
    Type: Application
    Filed: July 2, 2021
    Publication date: November 4, 2021
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Donald E. INGBER, Samira MUSAH
  • Publication number: 20210322976
    Abstract: A fluidic device includes a fluidic layer, a capture material, and an electronics layer, the fluidic layer includes a main channel and a pair of sample channels fluidly coupled to the main channel. The pair of sample channels is configured to receive and introduce a sample material into the device. The sample material includes an analyte. The capture material is positioned in a portion of the main channel that is spaced from the pair of sample channels. The capture material has a three-dimensional matrix of receptors therein configured to bond with the analyte. The capture material has a length that is associated with a dynamic range of the fluidic device and a cross-sectional area that is associated with a sensitivity of the fluidic device. The electronics layer includes electrodes configured to measure an electrical resistance through a portion of the capture material.
    Type: Application
    Filed: March 14, 2018
    Publication date: October 21, 2021
    Inventors: Carlos Francisco NG Pitti, Ulri Nicole Lee, Richard Novack, Olivier Yves Frederic Henry, Remco Franciscus Peter Van Erp, Donald E. Ingber
  • Publication number: 20210299676
    Abstract: Disclosed herein is an improved method for magnetic capture of target molecules (e.g., microbes) in a fluid. Kits and solid substrates for carrying the method described herein are also provided. In some embodiments, the methods, kits, and solid substrates described herein are optimized for separation and/or detection of microbes and microbe-associated molecular pattern (MAMP) (including, e.g., but not limited to, a cell component of microbes, lipopolysaccharides (LPS), and/or endotoxin).
    Type: Application
    Filed: June 10, 2021
    Publication date: September 30, 2021
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Joo Hun KANG, Donald E. INGBER, Michael SUPER
  • Patent number: 11119093
    Abstract: Provided herein relates to systems and methods for producing and using a body having a central channel separated by one or more membranes. The membrane(s) are configured to divide the central channel into at least one mesochannel and at least one microchannel. The height of the mesochannel is substantially greater than the height of the microchannel. A gaseous fluid can be applied through the mesochannel while a liquid fluid flowing through the microchannel. The systems and methods described herein can be used for various applications, including, e.g., growth and differentiation of primary cells such as human lung cells, as well as any other cells requiring low shear and/also stratified structures, or simulation of a microenvironment in living tissues and/or organs (to model physiology or disease states, and/or to identify therapeutic agents and/or vaccines). The systems and methods can also permit co-culture with one or more different cell types.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: September 14, 2021
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Donald E. Ingber, Kambez Hajipouran Benam, Remi Villenave, Geraldine A. Hamilton, Bryan Hassell, Christopher D. Hinojosa, Carolina Lucchesi
  • Publication number: 20210277079
    Abstract: Described herein are engineered microbe-targeting molecules, microbe-targeting articles, kits comprising the same, and uses thereof. Such microbe-targeting molecules, microbe-targeting articles, or the kits comprising the same can bind or capture of a microbe or microbial matter thereof, and can thus be used in various applications, such as diagnosis or treatment of an infection caused by microbes in a subject or any environmental surface.
    Type: Application
    Filed: May 12, 2021
    Publication date: September 9, 2021
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Alexander L. WATTERS, Donald E. INGBER, Mark J. CARTWRIGHT, Michael SUPER, Martin ROTTMAN, Evangelia MURRAY, Brendon DUSEL
  • Patent number: 11112410
    Abstract: The invention relates to methods of detection, capture, isolation and targeting of cancer cells for example circulating tumor cells (CTCs) using carbohydrate recognition domain of a lectin. The invention relates to methods of diagnosis, prognosis and treatment of cancer.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: September 7, 2021
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Joo-Hun Kang, Donald E. Ingber, Michael Super, Alexander L. Watters, Harry Scott Driscoll
  • Patent number: 11083754
    Abstract: Embodiments of various aspects described herein relate to methods, kits, and cell culture media for generation of podocytes from pluripotent stem (PS) cells, as well as cells produced by the same, and methods of use.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: August 10, 2021
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Donald E. Ingber, Samira Musah
  • Patent number: 11059050
    Abstract: Disclosed herein is an improved method for magnetic capture of target molecules (e.g., microbes) in a fluid. Kits and solid substrates for carrying the method described herein are also provided. In some embodiments, the methods, kits, and solid substrates described herein are optimized for separation and/or detection of microbes and microbe-associated molecular pattern (MAMP) (including, e.g., but not limited to, a cell component of microbes, lipopolysaccharides (LPS), and/or endotoxin).
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: July 13, 2021
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Joo Hun Kang, Donald E. Ingber, Michael Super
  • Patent number: 11059873
    Abstract: The present invention provides for engineered molecular opsonins that may be used to bind biological pathogens or identify subclasses or specific pathogen species for use in devices and systems for treatment and diagnosis of patients with infectious diseases, blood-borne infections or sepsis. An aspect of the invention provides for mannose-binding lectin (MBL), which is an abundant natural serum protein that is part of the innate immune system. The ability of this protein lectin to bind to surface molecules on virtually all classes of biopathogens (viruses, bacteria, fungi, protozoans) make engineered forms of MBL extremely useful in diagnosing and treating infectious diseases and sepsis.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: July 13, 2021
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Michael Super, Jeffrey Charles Way, Donald E. Ingber
  • Patent number: 11059874
    Abstract: The present invention provides for engineered molecular opsonins that may be used to bind biological pathogens or identify subclasses or specific pathogen species for use in devices and systems for treatment and diagnosis of patients with infectious diseases, blood-borne infections or sepsis. An aspect of the invention provides for mannose-binding lectin (MBL), which is an abundant natural serum protein that is part of the innate immune system. The ability of this protein lectin to bind to surface molecules on virtually all classes of biopathogens (viruses, bacteria, fungi, protozoans) make engineered forms of MBL extremely useful in diagnosing and treating infectious diseases and sepsis.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: July 13, 2021
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Michael Super, Jeffrey Charles Way, Donald E. Ingber
  • Patent number: 11034744
    Abstract: Described herein are engineered microbe-targeting molecules, microbe-targeting articles, kits comprising the same, and uses thereof. Such microbe-targeting molecules, microbe-targeting articles, or the kits comprising the same can bind or capture of a microbe or microbial matter thereof, and can thus be used in various applications, such as diagnosis or treatment of an infection caused by microbes in a subject or any environmental surface.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: June 15, 2021
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Alexander L. Watters, Donald E. Ingber, Mark J. Cartwright, Michael Super, Martin Rottman, Evangelia Murray, Brendon Dusel
  • Patent number: 11034926
    Abstract: Systems and methods for improved flow properties in fluidic and microfluidic systems are disclosed. The system includes a microfluidic device having a first microchannel, a fluid reservoir having a working fluid and a pressurized gas, a pump in communication with the fluid reservoir to maintain a desired pressure of the pressurized gas, and a fluid-resistance element located within a fluid path between the fluid reservoir and the first microchannel. The fluid-resistance element includes a first fluidic resistance that is substantially larger than a second fluidic resistance associated with the first microchannel.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: June 15, 2021
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Christopher David Hinojosa, Josiah Sliz, Daniel Levner, Guy Thompson, Hubert Geisler, Jose Fernandez-Alcon, Donald E. Ingber
  • Publication number: 20210170007
    Abstract: The present invention provides vaccine compositions and methods of producing such compositions. Other embodiments of the invention include methods of treating a pathogen infection, methods of vaccinating a subject against a pathogen infection, and methods for treating an antibiotic-resistance bacterial infection in a subject in need thereof. In further embodiments, the invention includes methods of decreasing the level of a pathogen in a subject having a pathogen infection, methods of increasing the surviving rate of a subject having a pathogen infection, methods of reducing the level of pain associated with a pathogen infection, and methods of reducing the level of distress associated with a pathogen infection in a subject in need thereof. Novel scaffold compositions and opsonin-bound or lectin-bound pathogen compositions, and uses thereof, are also provided herein.
    Type: Application
    Filed: September 9, 2020
    Publication date: June 10, 2021
    Inventors: Michael Super, Edward J. Doherty, Mark Joseph Cartwright, Des White, Alexander Stafford, Omar Abdel-Rahman Ali, Amanda Graveline, Donald E. Ingber, David J. Mooney, Benjamin Seiler
  • Publication number: 20210155677
    Abstract: Described herein are engineered microbe-targeting or microbe-binding molecules, kits comprising the same and uses thereof. Some particular embodiments of the microbe-targeting or microbe-binding molecules comprise a carbohydrate recognition domain of mannose-binding lectin, or a fragment thereof, linked to a portion of a Fc region. In some embodiments, the microbe-targeting molecules or microbe-binding molecules can be conjugated to a substrate, e.g., a magnetic microbead, forming a microbe-targeting substrate (e.g., a microbe-targeting magnetic microbead). Such microbe-targeting molecules and/or substrates and the kits comprising the same can bind and/or capture of a microbe and/or microbial matter thereof, and can thus be used in various applications, e.g., diagnosis and/or treatment of an infection caused by microbes such as sepsis in a subject or any environmental surface.
    Type: Application
    Filed: November 10, 2020
    Publication date: May 27, 2021
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Donald E. INGBER, Michael SUPER, Jeffrey Charles WAY, Mark J. CARTWRIGHT, Julia B. BERTHET, Dinah R. SUPER, Martin ROTTMAN, Alexander L. WATTERS
  • Patent number: 11001797
    Abstract: A system and methods for aerosol delivery of an entity or agent are disclosed. The system and methods can include a target application surface. A nebulizer can be located in close proximity to the target application surface. The nebulizer can include a chamber to hold the entity, a nozzle plate including one nozzle, and a piezoelectric element coupled to the nozzle plate. A power source can be coupled to the piezoelectric element. The power source, when activated, can energize the piezoelectric element to vibrate the nozzle plate to cause the entity to be nebulized through the nozzle to impact the target application surface.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: May 11, 2021
    Assignee: President and Fellows of Harvard College
    Inventors: Karel Domansky, Michael Karpelson, Donald E. Ingber