Patents by Inventor Donald S. Gardner

Donald S. Gardner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180096776
    Abstract: Embodiments are generally directed to an integrated inductor with adjustable coupling. In some embodiments, an integrated inductor includes a first conductor and a second conductor; a first strip of magnetic material film below the first conductor and the second conductor; and a second strip of magnetic material film above the first conductor and the second conductor, wherein at least one of the first strip of magnetic material and the second strip of magnetic material includes a partial slot to partially separate a first section of the strip of magnetic material and a second section of the strip of magnetic material.
    Type: Application
    Filed: October 1, 2016
    Publication date: April 5, 2018
    Inventor: Donald S. GARDNER
  • Patent number: 9928966
    Abstract: In one embodiment, a structure for an energy storage device may include a first nanostructured substrate having a conductive layer and a dielectric layer formed on the conductive layer. A second nanostructured substrate includes another conductive layer. A separator separates the first and second nanostructured substrates and allows ions of an electrolyte to pass through the separator. The structure may be a nanostructured electrolytic capacitor with the first nanostructured substrate forming a positive electrode and the second nanostructured substrate forming a negative electrode of the capacitor.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: March 27, 2018
    Assignee: INTEL CORPORATION
    Inventors: Zhaohui Chen, Donald S. Gardner, Bum Ki Moon, Charles W. Holzwarth, Cary L. Pint, Scott B. Clendenning
  • Patent number: 9793061
    Abstract: An energy storage device comprises a first porous semiconducting structure (510) comprising a first plurality of channels (511) that contain a first electrolyte (514) and a second porous semiconducting structure (520) comprising a second plurality of channels (521) that contain a second electrolyte (524). In one embodiment, the energy storage device further comprises a film (535) on at least one of the first and second porous semiconducting structures, the film comprising a material capable of exhibiting reversible electron transfer reactions. In another embodiment, at least one of the first and second electrolytes contains a plurality of metal ions. In another embodiment, the first and second electrolytes, taken together, comprise a redox system.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: October 17, 2017
    Assignee: Intel Corporation
    Inventors: Donald S. Gardner, Cary L. Pint, Scott B. Clendenning
  • Publication number: 20170236654
    Abstract: Hybrid electrochemical capacitors, electronic devices using such capacitors, and associated methods are disclosed. In an example, a hybrid electrochemical capacitor can include a first electrode made from Mg, Na, Zn, Al, Sn, or Li, a second electrode made from a porous material such as porous carbon or passivated porous silicon, and an electrolyte. The hybrid electrochemical capacitors can have enhanced voltage and energy density compared to other electrochemical capacitors, and enhanced power density compared to batteries.
    Type: Application
    Filed: April 27, 2017
    Publication date: August 17, 2017
    Applicant: Intel Corporation
    Inventors: DONALD S. GARDNER, CHUNLEI WANG, YANG LIU, ZHAOHUI CHEN, CHARLES W. HOLZWARTH, BUM KI MOON
  • Publication number: 20170207035
    Abstract: In one embodiment of the invention, a low frequency converter is described that includes a first electrochemical capacitor to charge to an input voltage and a second electrochemical capacitor that is coupled to the first electrochemical capacitor. The second electrochemical capacitor is associated with an output voltage of the low frequency converter. Each electrochemical capacitor may have a capacitance of at least one millifarad (mF) and a switching frequency that is less than one kilohertz.
    Type: Application
    Filed: April 4, 2017
    Publication date: July 20, 2017
    Applicant: INTEL CORPORATION
    Inventors: Donald S. Gardner, Pavan Kumar
  • Publication number: 20170155131
    Abstract: Electrodes, energy storage devices using such electrodes, and associated methods are disclosed. In an example, an electrode for use in an energy storage device can comprise porous disks comprising a porous material, the porous disks having a plurality of channels and a surface, the plurality of channels opening to the surface; and a structural material encapsulating the porous disks; where the structural material provides structural stability to the electrode during use.
    Type: Application
    Filed: November 1, 2016
    Publication date: June 1, 2017
    Applicant: Intel Corporation
    Inventors: Donald S. Gardner, Charles W. Holzwarth, Bum Ki Moon, Yang Liu, Priyanka Pande, Shanthi Murali, Nicolas Cirigliano, Zhaohui Chen
  • Patent number: 9640332
    Abstract: Hybrid electrochemical capacitors, electronic devices using such capacitors, and associated methods are disclosed. In an example, a hybrid electrochemical capacitor can include a first electrode made from Mg, Na, Zn, Al, Sn, or Li, a second electrode made from a porous material such as porous carbon or passivated porous silicon, and an electrolyte. The hybrid electrochemical capacitors can have enhanced voltage and energy density compared to other electrochemical capacitors, and enhanced power density compared to batteries.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: May 2, 2017
    Assignee: Intel Corporation
    Inventors: Donald S. Gardner, Chunlei Wang, Yang Liu, Zhaohui Chen, Charles W. Holzwarth, Bum Ki Moon
  • Patent number: 9620296
    Abstract: In one embodiment of the invention, a low frequency converter is described that includes a first electrochemical capacitor to charge to an input voltage and a second electrochemical capacitor that is coupled to the first electrochemical capacitor. The second electrochemical capacitor is associated with an output voltage of the low frequency converter. Each electrochemical capacitor may have a capacitance of at least one millifarad (mF) and a switching frequency that is less than one kilohertz.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: April 11, 2017
    Assignee: Intel Corporation
    Inventors: Donald S. Gardner, Pavan Kumar
  • Publication number: 20160379752
    Abstract: Embodiments of a variable inductor and a communication device are generally described herein. The variable inductor may comprise a signal wire and a control wire to receive a direct current (DC) control current. The variable inductor may further comprise a magnetic material integrated with the signal wire and the control wire. When a DC control current applied to the control wires takes a first current value, an inductance between an input node and an output node on the signal wire may take a first inductance value. When the DC control current takes a second current value, the inductance between the input node and the output node may take a second inductance value.
    Type: Application
    Filed: June 26, 2015
    Publication date: December 29, 2016
    Inventors: Donald S. Gardner, Hossein Alavi
  • Publication number: 20160358716
    Abstract: An energy storage device comprises a first porous semiconducting structure (510) comprising a first plurality of channels (511) that contain a first electrolyte (514) and a second porous semiconducting structure (520) comprising a second plurality of channels (521) that contain a second electrolyte (524). In one embodiment, the energy storage device further comprises a film (535) on at least one of the first and second porous semiconducting structures, the film comprising a material capable of exhibiting reversible electron transfer reactions. In another embodiment, at least one of the first and second electrolytes contains a plurality of metal ions. In another embodiment, the first and second electrolytes, taken together, comprise a redox system.
    Type: Application
    Filed: August 17, 2016
    Publication date: December 8, 2016
    Applicant: Intel Corporation
    Inventors: Donald S. Gardner, Cary L. Pint, Scott B. Clendenning
  • Patent number: 9484576
    Abstract: Electrodes, energy storage devices using such electrodes, and associated methods are disclosed. In an example, an electrode for use in an energy storage device can comprise porous disks comprising a porous material, the porous disks having a plurality of channels and a surface, the plurality of channels opening to the surface; and a structural material encapsulating the porous disks; where the structural material provides structural stability to the electrode during use.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: November 1, 2016
    Assignee: Intel Corporation
    Inventors: Donald S. Gardner, Charles W. Holzwarth, Bum Ki Moon, Yang Liu, Priyanka Pande, Shanthi Murali, Nicolas Cirigliano, Zhaohui Chen
  • Patent number: 9466662
    Abstract: In one embodiment, an energy storage device (e.g., capacitor) may include a porous silicon layer formed within a substrate. The porous silicon layer includes pores with a mean pore diameter less than approximately 100 nanometers. A first conductive layer is formed on the porous silicon layer and a first dielectric layer is formed on the first conductive layer. A second conductive layer is formed on the first dielectric layer to form the capacitor.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: October 11, 2016
    Assignee: Intel Corporation
    Inventors: Donald S. Gardner, Larry E. Mosley
  • Patent number: 9449765
    Abstract: An energy storage device comprises a first porous semiconducting structure (510) comprising a first plurality of channels (511) that contain a first electrolyte (514) and a second porous semiconducting structure (520) comprising a second plurality of channels (521) that contain a second electrolyte (524). In one embodiment, the energy storage device further comprises a film (535) on at least one of the first and second porous semiconducting structures, the film comprising a material capable of exhibiting reversible electron transfer reactions. In another embodiment, at least one of the first and second electrolytes contains a plurality of metal ions. In another embodiment, the first and second electrolytes, taken together, comprise a redox system.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: September 20, 2016
    Assignee: Intel Corporation
    Inventors: Donald S. Gardner, Cary Pint, Scott B. Clendenning
  • Publication number: 20160268065
    Abstract: In one embodiment a charge storage device includes first (110) and second (120) electrically conductive structures separated from each other by a separator (130). At least one of the first and second electrically conductive structures includes a porous structure containing multiple channels (111, 121). Each one of the channels has an opening (112, 122) to a surface (115, 125) of the porous structure. In another embodiment the charge storage device includes multiple nanostructures (610) and an electrolyte (650) in physical contact with at least some of the nanostructures. A material (615) having a dielectric constant of at least 3.9 may be located between the electrolyte and the nanostructures.
    Type: Application
    Filed: May 25, 2016
    Publication date: September 15, 2016
    Applicant: Intel Corporation
    Inventors: Donald S. Gardner, Eric C. Hannah, Rong Chen, John L. Gustafson
  • Patent number: 9409767
    Abstract: An energy storage structure includes an energy storage device containing at least one porous structure (110, 120, 510, 1010) that contains multiple channels (111, 121), each one of which has an opening (112, 122) to a surface (115, 116, 515, 516, 1015, 1116) of the porous structure, and further includes a support structure (102, 402, 502, 1002) for the energy storage device. In a particular embodiment, the porous structure and the support structure are both formed from a first material, and the support structure physically contacts a first portion (513, 813, 1213) of the energy storage device and exposes a second portion (514, 814, 1214) of the energy storage device.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: August 9, 2016
    Assignee: Intel Corporation
    Inventors: Donald S. Gardner, Zhaohui Chen, Wei C. Jin, Eric C. Hannah, John L. Gustafson, Tomm V. Aldridge
  • Patent number: 9384903
    Abstract: An energy storage device comprises at least one porous structure (500, 900) containing multiple channels (510), each one of which has an opening to a surface (505) of the porous structure. Each one of the channels has a first end (511) having a first average width (513) and a second end (512) having a second average width (514), with the first end being located where the channel opens to the surface of the porous structure and the second end being located at a distance from the first end as measured along a length of the channel. For at least some of the channels, the first average width is larger than the second average width.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: July 5, 2016
    Inventors: Donald S. Gardner, Wei Jin, Zhaohui Chen
  • Publication number: 20160187282
    Abstract: Disclosed herein is a device comprising an electrode pair comprising a first electrode and a second electrode; a nanogap channel; wherein a portion of the nanogap channel is sandwiched between the first electrode and the second electrode; wherein at least a portion of the first electrode directly faces at least a portion of the second electrode, across the nanogap channel; wherein the portion of the first electrode and the portion of the second electrode are exposed to an interior of the nanogap channel; and wherein the first electrode or the second electrode comprises doped diamond, silicon carbide or a combination thereof. Also disclosed herein is a method comprising forming on a carrier substrate a first material layer comprising doped diamond, silicon carbide or a combination thereof; bonding the first material layer onto an electrical circuit.
    Type: Application
    Filed: December 26, 2014
    Publication date: June 30, 2016
    Inventors: Donald S. Gardner, Oguz H. Elibol
  • Publication number: 20160170456
    Abstract: An integrated circuit (IC) package is disclosed. The IC package includes a first die; and a second die bonded to the CPU die in a three dimensional packaging layout.
    Type: Application
    Filed: September 25, 2012
    Publication date: June 16, 2016
    Applicant: INTEL CORPORATION
    Inventors: Siva G. Narendra, James W. Tschanz, Howard A. Wilson, Donald S. Gardner, Peter Hazucha, Gerhard Schrom, Tanay Karnik, Nitin Borkar, Vivek K. De, Shekhar Y. Borkar
  • Patent number: 9368290
    Abstract: In one embodiment a charge storage device includes first (110) and second (120) electrically conductive structures separated from each other by a separator (130). At least one of the first and second electrically conductive structures includes a porous structure containing multiple channels (111, 121). Each one of the channels has an opening (112, 122) to a surface (115, 125) of the porous structure. In another embodiment the charge storage device includes multiple nanostructures (610) and an electrolyte (650) in physical contact with at least some of the nanostructures. A material (615) having a dielectric constant of at least 3.9 may be located between the electrolyte and the nanostructures.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: June 14, 2016
    Assignee: Intel Corporation
    Inventors: Donald S. Gardner, Eric C. Hannah, Rong Chen, John Gustafson
  • Publication number: 20160064152
    Abstract: Embodiments of the invention describe energy storage devices, porous electrodes, and methods of formation. In an embodiment, an energy storage device includes a porous structure containing multiple main channels that extend into an electrically conductive structure at an acute angle. In an embodiment, an energy storage device includes a porous structure containing an array of V-groove or pyramid recesses.
    Type: Application
    Filed: November 4, 2015
    Publication date: March 3, 2016
    Inventors: Donald S. Gardner, Charles W. Holzwarth, Win Jei