Patents by Inventor Dong-Gun Park

Dong-Gun Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7800172
    Abstract: In a method of manufacturing a semiconductor device, a preliminary active pattern including gate layers and channel layers is formed on a substrate. The gate layers and the channel layers are alternatively stacked. A hard mask is formed on the preliminary active pattern. The preliminary active pattern is partially etched using the hard mask as an etching mask to expose a surface of the substrate. The etched preliminary active pattern is trimmed to form an active channel pattern having a width less than a lower width of the hard mask. Source/drain layers are formed on exposed side faces of the active channel pattern and the surface. The gate layers are selectively etched to form tunnels. A gate encloses the active channel pattern and filling the tunnels. Related intermediate structures are also disclosed.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: September 21, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Young Lee, Sung-Min Kim, Dong-Gun Park, Chang-Woo Oh, Eun-Jung Yun
  • Patent number: 7790494
    Abstract: A memory device may include a substrate, a bit line, at least a first lower word line, at least a first trap site, a pad electrode, at least a first cantilever electrode, and/or at least a first upper word line. The bit line may be formed on the substrate in a first direction. The first lower word line and the first trap site may be insulated from the bit line and formed in a second direction crossing the bit line. The pad electrode may be insulated at sidewalls of the first lower word line and the first trap site and connected to the bit line. The first cantilever electrode may be formed in the first direction, connected to the pad electrode, floated on the first trap site with at least a first lower vacant space, and/or configured to be bent in a third direction. The first upper word line may be formed on the first cantilever electrode in the second direction with at least a first upper vacant space.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: September 7, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Min-Sang Kim, Sung-Young Lee, Sung-Min Kim, Eun-Jung Yun, Dong-Won Kim, Dong-Gun Park
  • Publication number: 20100221876
    Abstract: In semiconductor devices, and methods of formation thereof, both planar-type memory devices and vertically oriented thin body devices are formed on a common semiconductor layer. In a memory device, for example, it is desirable to have planar-type transistors in a peripheral region of the device, and vertically oriented thin body transistor devices in a cell region of the device. In this manner, the advantageous characteristics of each type of device can be applied to appropriate functions of the memory device.
    Type: Application
    Filed: April 5, 2010
    Publication date: September 2, 2010
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Sung-Min Kim, Dong-Gun Park, Dong-Won Kim, Min-Sang Kim, Eun-jung Yun
  • Patent number: 7781285
    Abstract: There are provided a semiconductor device having a vertical transistor and a method of fabricating the same. The method includes preparing a semiconductor substrate having a cell region and a peripheral circuit region. Island-shaped vertical gate structures two-dimensionally aligned along a row direction and a column direction are formed on the substrate of the cell region. Each of the vertical gate structures includes a semiconductor pillar and a gate electrode surrounding a center portion of the semiconductor pillar. A bit line separation trench is formed inside the semiconductor substrate below a gap region between the vertical gate structures, and a peripheral circuit trench confining a peripheral circuit active region is formed inside the semiconductor substrate of the peripheral circuit region. The bit line separation trench is formed in parallel with the column direction of the vertical gate structures.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: August 24, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Bong-Soo Kim, Kang-Yoon Lee, Dong-Gun Park, Jae-Man Yoon, Seong-Goo Kim, Hyeoung-Won Seo
  • Patent number: 7781287
    Abstract: Vertical channel semiconductor devices include a semiconductor substrate with a pillar having an upper surface. An insulated gate electrode is around a periphery of the pillar. The insulated gate electrode has an upper surface at a vertical level lower than the upper surface of the pillar to vertically space apart the insulated gate electrode from the upper surface of the pillar. A first source/drain region is in the substrate adjacent the pillar. A second source/drain region is disposed in an upper region of the pillar including the upper surface of the pillar. A contact pad contacts the entire upper surface of the pillar to electrically connect to the second source/drain region.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: August 24, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-man Yoon, Dong-gun Park, Choong-Ho Lee, Seong-Goo Kim, Won-sok Lee, Seung-bae Park
  • Patent number: 7759198
    Abstract: Methods of manufacturing a semiconductor device include forming a matrix of active pillars including a channel part on a substrate. Channel dopant regions are formed in the channel parts of the active pillars. Gate electrodes are formed on an outer surface of the channel parts that surround the channel dopant regions. The matrix of active pillars may be arranged in rows in a first direction and in columns in a second direction crossing the first direction on the substrate.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: July 20, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyeoung-won Seo, Jae-man Yoon, Dong-gun Park, Seong-goo Kim
  • Patent number: 7745871
    Abstract: A method of forming a fin field effect transistor on a semiconductor substrate includes forming a fin-shaped active region vertically protruding from the substrate. An oxide layer is formed on a top surface and opposing sidewalls of the fin-shaped active region. An oxidation barrier layer is formed on the opposing sidewalls of the fin-shaped active region and is planarized to a height no greater than about a height of the oxide layer to form a fin structure. The fin structure is oxidized to form a capping oxide layer on the top surface of the fin-shaped active region and to form at least one curved sidewall portion proximate the top surface of the fin-shaped active region. The oxidation barrier layer has a height sufficient to reduce oxidation on the sidewalls of the fin-shaped active region about halfway between the top surface and a base of the fin-shaped active region. Related devices are also discussed.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: June 29, 2010
    Inventors: Chang-Woo Oh, Dong-Gun Park, Dong-Won Kim, Yong-Kyu Lee
  • Publication number: 20100127328
    Abstract: An SOI substrate is fabricated by providing a substrate having a sacrificial layer thereon, an active semiconductor layer on the sacrificial layer remote from the substrate and a supporting layer that extends along at least two sides of the active semiconductor layer and the sacrificial layer and onto the substrate, and that exposes at least one side of the sacrificial layer. At least some of the sacrificial layer is etched through the at least one side thereof that is exposed by the supporting layer to form a void space between the substrate and the active semiconductor layer, such that the active semiconductor layer is supported in spaced-apart relation from the substrate by the supporting layer. The void space may be at least partially filled with an insulator lining.
    Type: Application
    Filed: January 29, 2010
    Publication date: May 27, 2010
    Inventors: Chang-Woo Oh, Dong-Gun Park, Sung-Young Lee, Jeong-Dong Choe
  • Patent number: 7719068
    Abstract: There are provided a multi-bit electro-mechanical memory device capable of enhancing or maximizing a degree of integration of the memory device and a method of manufacturing the multi-bit electro-mechanical memory device which includes a substrate, a bit line on the substrate, and extending in a first direction; a word line on the bit line, insulated from the bit line, and extending in a second direction transverse to the first direction, and a cantilever electrode including a shape memory alloy. The cantilever electrode has a first portion electrically connected to the bit line and a second portion extending in the first direction, and spaced apart from the word line by an air gap, wherein the cantilever electrode, in a first state, is in electrical contact with the word line, and, in a second state, is spaced apart from the word line.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: May 18, 2010
    Assignee: Samsung Electronics, Co., Ltd.
    Inventors: Sung-Young Lee, Dong-Won Kim, Min-Sang Kim, Eun-Jung Yun, Dong-Gun Park
  • Publication number: 20100117140
    Abstract: A non-volatile memory device for 2-bit operation and a method of fabricating the same are provided. The non-volatile memory device includes an active region and a gate extending in a word line direction on a semiconductor substrate, and crossing each other repeatedly; a charge storage layer disposed below the gate, and confined at a portion where the gate and the active region cross; a charge blocking layer formed on the charge storage layer; a tunnel dielectric layer formed below the charge storage layer; first and second source/drain regions formed in the active region exposed by the gate; and first and second bit lines crossing the word line direction. The active region may be formed in a first zigzag pattern and/or the gate may be formed in a second zigzag pattern in symmetry with the first zigzag pattern.
    Type: Application
    Filed: January 22, 2010
    Publication date: May 13, 2010
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Byung-yong Choi, Dong-gun Park, Yun-gi Kim, Choong-ho Lee, Young-mi Lee, Hye-jin Cho
  • Publication number: 20100109087
    Abstract: Unit cells of metal oxide semiconductor (MOS) transistors are provided including an integrated circuit substrate an a MOS transistor on the integrated circuit substrate. The MOS transistor includes a source region, a drain region and a gate. The gate is positioned between the source region and the drain region. A horizontal channel is provided between the source and drain regions. The horizontal channel includes at least two spaced apart horizontal channel regions. Related methods of fabricating MOS transistors are also provided.
    Type: Application
    Filed: January 14, 2010
    Publication date: May 6, 2010
    Inventors: Kyoung-Hwan Yeo, Dong-Gun Park, Jeong-Dong Choe
  • Patent number: 7675105
    Abstract: A non-volatile memory device for 2-bit operation and a method of fabricating the same are provided. The non-volatile memory device includes an active region and a gate extending in a word line direction on a semiconductor substrate, and crossing each other repeatedly; a charge storage layer disposed below the gate, and confined at a portion where the gate and the active region cross; a charge blocking layer formed on the charge storage layer; a tunnel dielectric layer formed below the charge storage layer; first and second source/drain regions formed in the active region exposed by the gate; and first and second bit lines crossing the word line direction. The active region may be formed in a first zigzag pattern and/or the gate may be formed in a second zigzag pattern in symmetry with the first zigzag pattern.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: March 9, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byung-yong Choi, Dong-gun Park, Yun-gi Kim, Choong-ho Lee, Young-mi Lee, Hye-jin Cho
  • Patent number: 7670912
    Abstract: Unit cells of metal oxide semiconductor (MOS) transistors are provided including an integrated circuit substrate an a MOS transistor on the integrated circuit substrate. The MOS transistor includes a source region, a drain region and a gate. The gate is positioned between the source region and the drain region. A horizontal channel is provided between the source and drain regions. The horizontal channel includes at least two spaced apart horizontal channel regions. Related methods of fabricating MOS transistors are also provided.
    Type: Grant
    Filed: March 10, 2004
    Date of Patent: March 2, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyoung-Hwan Yeo, Dong-Gun Park, Jeong-Dong Choe
  • Publication number: 20100044784
    Abstract: A fin field-effect transistor (FinFET) device includes a fin-shaped active region having first and second source/drain regions therein and a channel region therebetween vertically protruding from a semiconductor substrate. A gate electrode is formed on an upper surface and sidewalls of the channel region. First and second source/drain contacts are formed on respective upper surfaces and sidewalls of the first and second source/drain regions of the fin-shaped active region at opposite sides of the gate electrode. The channel region may be narrower than the first and second source/drain regions of the fin-shaped active region.
    Type: Application
    Filed: November 5, 2009
    Publication date: February 25, 2010
    Inventors: Chang-Woo Oh, Dong-Gun Park, Sung-Young Lee, Jeong-Dong Choe, Dong-Won Kim
  • Publication number: 20100038702
    Abstract: Example embodiments relate to a semiconductor memory device and methods of forming the same. Other example embodiments relate to a nonvolatile memory device and methods of forming the same. The memory device may include memory cells separately formed on a channel region between impurity regions formed on a substrate. The memory cells may each include a memory layer having a tunnel insulating layer, a nano-sized charge storage layer, and a blocking insulating layer and a side gate formed on the memory layer. According to example embodiments, larger scale integration of the nonvolatile memory devices may be achieved and the reliability of the memory devices may increase.
    Type: Application
    Filed: October 2, 2009
    Publication date: February 18, 2010
    Inventors: Chang-woo Oh, Sung-hwan Kim, Dong-gun park, Dong-won Kim
  • Publication number: 20100035398
    Abstract: A field effect transistor (FET) and a method for manufacturing the same, in which the FET may include an isolation film formed on a semiconductor substrate to define an active region, and a gate electrode formed on a given portion of the semiconductor substrate. A channel layer may be formed on a portion of the gate electrode, with source and drain regions formed on either side of the channel layer so that boundaries between the channel layer and the source and drain regions of the FET may be perpendicular to a surface of the semiconductor substrate.
    Type: Application
    Filed: October 7, 2009
    Publication date: February 11, 2010
    Inventors: Chang-Woo Oh, Dong-Gun Park, Dong-Won Kim, Dong-Uk Choi, Kyoung-Hwan Yeo
  • Patent number: 7652322
    Abstract: In a flash memory device, which can maintain an enhanced electric field between a control gate and a storage node (floating gate) and has a reduced cell size, and a method of manufacturing the flash memory device, the flash memory device includes a semiconductor substrate having a pair of drain regions and a source region formed between the pair of drain regions, a pair of spacer-shaped control gates each formed on the semiconductor substrate between the source region and each of the drain regions, and a storage node formed in a region between the control gate and the semiconductor substrate. A bottom surface of each of the control gates includes a first region that overlaps with the semiconductor substrate and a second region that overlaps with the storage node. The pair of spacer-shaped control gates are substantially symmetrical with each other about the source region.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: January 26, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byung-yong Choi, Chang-woo Oh, Dong-gun Park, Dong-won Kim, Yong-kyu Lee
  • Patent number: 7618864
    Abstract: Example embodiments relate to a semiconductor memory device and methods of forming the same. Other example embodiments relate to a nonvolatile memory device and methods of forming the same. The memory device may include memory cells separately formed on a channel region between impurity regions formed on a substrate. The memory cells may each include a memory layer having a tunnel insulating layer, a nano-sized charge storage layer, and a blocking insulating layer and a side gate formed on the memory layer. According to example embodiments, larger scale integration of the nonvolatile memory devices may be achieved and the reliability of the memory devices may increase.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: November 17, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-woo Oh, Sung-hwan Kim, Dong-gun Park, Dong-won Kim
  • Patent number: 7615429
    Abstract: Integrated circuit field effect transistor devices include a substrate having a surface and an active channel pattern on the surface. The active channel pattern includes channels that are stacked upon one another and are spaced apart from one another to define at least one tunnel between adjacent channels. A gate electrode surrounds the channels and extends through the at least one tunnel. A pair of source/drain regions also is provided. Integrated circuit field effect transistors are manufactured, by forming a pre-active pattern on a surface of a substrate. The pre-active pattern includes a series of interchannel layers and channel layers stacked alternately upon each other. Source/drain regions are formed on the substrate at opposite ends of the pre-active pattern. The interchannel layers are selectively removed to form tunnels. A gate electrode is formed in the tunnels and surrounding the channels.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: November 10, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Min Kim, Dong-Gun Park, Chang-Sub Lee, Jeong-Dong Choe, Shin-Ae Lee, Seong-Ho Kim
  • Publication number: 20090267137
    Abstract: Provided is a method of manufacturing a semiconductor device, by which a cell transistor formed on a cell array area of a semiconductor substrate employs a structure in which an electrode in the shape of spacers is used to form a gate and a multi-bit operation is possible using localized bits, and transistors having structures optimized to satisfy different requirements depending upon functions of the transistors can be formed on a peripheral circuit area which is the residual area of the semiconductor substrate. In this method, a cell transistor is formed on the cell array area.
    Type: Application
    Filed: July 7, 2009
    Publication date: October 29, 2009
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Byung-yong Choi, Choong-ho Lee, Dong-won Kim, Dong-gun Park