Patents by Inventor Dong Hyung Lee

Dong Hyung Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200028082
    Abstract: The present disclosure relates to an organic electroluminescence device. The organic electroluminescence device of the present disclosure comprises a specific combination of a host compound and a hole transport material which can provide excellent lifespan characteristics.
    Type: Application
    Filed: October 13, 2017
    Publication date: January 23, 2020
    Applicant: Rohm and Haas Electronic Materials Korea Ltd.
    Inventors: Dong-Hyung LEE, Tae-Jin LEE, Bitnari KIM
  • Publication number: 20200013964
    Abstract: The present disclosure relates to an organic electroluminescent device comprising a light-emitting layer and a hole transport zone. By comprising a specific combination of a light-emitting layer and a hole transport zone, it is possible to provide an organic electroluminescent device having low driving voltage, high luminous efficiency and/or long lifespan properties.
    Type: Application
    Filed: February 27, 2018
    Publication date: January 9, 2020
    Inventors: Tae-Jin LEE, Jeong-Eun YANG, Dong-Hyung LEE, Sang-Hee CHO
  • Publication number: 20190326525
    Abstract: The present disclosure relates to an organic electroluminescent material comprising at least two types of compounds and an organic electroluminescent device comprising the same. The organic electroluminescent device having color purity superior to that of a conventional organic electroluminescent device can be provided by comprising the specific combination of the compounds of the present disclosure.
    Type: Application
    Filed: December 5, 2017
    Publication date: October 24, 2019
    Inventors: Bitnari KIM, Dong-Hyung LEE, Hyun KIM
  • Publication number: 20190312218
    Abstract: The present disclosure relates to an organic electroluminescent compound and an organic electroluminescent device comprising the same. By comprising the organic electroluminescent compound of the present disclosure, it is possible to provide an organic electroluminescent device having low driving voltage and/or high luminous efficiency properties while exhibiting deep red color compared to a conventional organic electroluminescent device.
    Type: Application
    Filed: December 26, 2017
    Publication date: October 10, 2019
    Inventors: Hyun KIM, Dong-Hyung LEE
  • Publication number: 20190273209
    Abstract: The present disclosure relates to an organic electroluminescent device. The organic electroluminescent device of the present disclosure can provide an excellent lifespan characteristic by comprising a specific combination of a host compound and a hole transport material.
    Type: Application
    Filed: November 23, 2017
    Publication date: September 5, 2019
    Inventors: Dong-Hyung LEE, Tae-Jin LEE, Bitnari KIM
  • Publication number: 20190259947
    Abstract: The present disclosure relates to an organic electroluminescent device. The organic electroluminescent device of the present disclosure can provide a low driving voltage and excellent luminous efficiency by comprising a specific combination of a host compound and a hole transport material.
    Type: Application
    Filed: October 11, 2017
    Publication date: August 22, 2019
    Inventors: Tae-Jin LEE, Dong-Hyung LEE, Bitnari KIM, Hong-Se OH, Young-Kwang KIM
  • Publication number: 20190221758
    Abstract: The present disclosure relates to an organic electroluminescent material comprising at least two types of compounds and an organic electroluminescent device comprising the same. The organic electroluminescent device having better color purity than a conventional organic electroluminescent device can be provided by comprising the specific combination of the compounds of the present disclosure.
    Type: Application
    Filed: September 20, 2017
    Publication date: July 18, 2019
    Inventors: Bitnari KIM, Hyun KIM, Dong Hyung LEE
  • Publication number: 20190172714
    Abstract: Implementations described herein generally relate to the fabrication of integrated circuits. More particularly, the implementations described herein provide techniques for deposition of amorphous carbon films on a substrate. In one implementation, a method of forming an amorphous carbon film is provided. The method comprises depositing an amorphous carbon film on an underlayer positioned on a susceptor in a first processing region. The method further comprises implanting a dopant or inert species into the amorphous carbon film in a second processing region. The dopant or inert species is selected from carbon, boron, nitrogen, silicon, phosphorous, argon, helium, neon, krypton, xenon or combinations thereof. The method further comprises patterning the doped amorphous carbon film. The method further comprises etching the underlayer.
    Type: Application
    Filed: November 13, 2018
    Publication date: June 6, 2019
    Inventors: Sarah BOBEK, Prashant KUMAR KULSHRESHTHA, Rajesh PRASAD, Kwangduk Douglas LEE, Harry WHITESELL, Hidetaka OSHIO, Dong Hyung LEE, Deven Matthew Raj MITTAL
  • Patent number: 9932670
    Abstract: A method and apparatus for removing deposition products from internal surfaces of a processing chamber, and for preventing or slowing growth of such deposition products. A halogen containing gas is provided to the chamber to etch away deposition products. A halogen scavenging gas is provided to the chamber to remove any residual halogen. The halogen scavenging gas is generally activated by exposure to electromagnetic energy, either inside the processing chamber by thermal energy, or in a remote chamber by electric field, UV, or microwave. A deposition precursor may be added to the halogen scavenging gas to form a deposition resistant film on the internal surfaces of the chamber. Additionally, or alternately, a deposition resistant film may be formed by sputtering a deposition resistant metal onto internal components of the processing chamber in a PVD process.
    Type: Grant
    Filed: January 7, 2014
    Date of Patent: April 3, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Jie Su, Lori D. Washington, Sandeep Nijhawan, Olga Kryliouk, Jacob Grayson, Sang Won Kang, Dong Hyung Lee, Hua Chung
  • Publication number: 20140116470
    Abstract: A method and apparatus for removing deposition products from internal surfaces of a processing chamber, and for preventing or slowing growth of such deposition products. A halogen containing gas is provided to the chamber to etch away deposition products. A halogen scavenging gas is provided to the chamber to remove any residual halogen. The halogen scavenging gas is generally activated by exposure to electromagnetic energy, either inside the processing chamber by thermal energy, or in a remote chamber by electric field, UV, or microwave. A deposition precursor may be added to the halogen scavenging gas to form a deposition resistant film on the internal surfaces of the chamber. Additionally, or alternately, a deposition resistant film may be formed by sputtering a deposition resistant metal onto internal components of the processing chamber in a PVD process.
    Type: Application
    Filed: January 7, 2014
    Publication date: May 1, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Jie SU, Lori D. WASHINGTON, Sandeep NIJHAWAN, Olga KRYLIOUK, Jacob GRAYSON, Sang Won KANG, Dong Hyung LEE, Hua CHUNG
  • Patent number: 8642128
    Abstract: Methods and apparatus for processing a substrate are provided herein. In some embodiments, an apparatus for substrate processing includes a process chamber having a chamber body defining an inner volume; and a silicon containing coating disposed on an interior surface of the chamber body, wherein an outer surface of the silicon containing coating is at least 35 percent silicon (Si) by atom. In some embodiments, a method for forming a silicon containing coating in a process chamber includes providing a first process gas comprising a silicon containing gas to an inner volume of the process chamber; and forming a silicon containing coating on an interior surface of the process chamber, wherein an outer surface of the silicon containing coating is at least 35 percent silicon.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: February 4, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Dongwon Choi, Dong Hyung Lee, Tze Poon, Manoj Vellaikal, Peter Porshnev, Majeed Foad
  • Publication number: 20110117728
    Abstract: A method and apparatus for removing deposition products from internal surfaces of a processing chamber, and for preventing or slowing growth of such deposition products. A halogen containing gas is provided to the chamber to etch away deposition products. A halogen scavenging gas is provided to the chamber to remove any residual halogen. The halogen scavenging gas is generally activated by exposure to electromagnetic energy, either inside the processing chamber by thermal energy, or in a remote chamber by electric field, UV, or microwave. A deposition precursor may be added to the halogen scavenging gas to form a deposition resistant film on the internal surfaces of the chamber. Additionally, or alternately, a deposition resistant film may be formed by sputtering a deposition resistant metal onto internal components of the processing chamber in a PVD process.
    Type: Application
    Filed: August 26, 2010
    Publication date: May 19, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Jie Su, Lori D. Washington, Sandeep Nijhawan, Olga Kryliouk, Jacob Grayson, Sang Won Kang, Dong Hyung Lee, Hua Chung
  • Publication number: 20100267224
    Abstract: Methods and apparatus for processing a substrate are provided herein. In some embodiments, an apparatus for substrate processing includes a process chamber having a chamber body defining an inner volume; and a silicon containing coating disposed on an interior surface of the chamber body, wherein an outer surface of the silicon containing coating is at least 35 percent silicon (Si) by atom. In some embodiments, a method for forming a silicon containing coating in a process chamber includes providing a first process gas comprising a silicon containing gas to an inner volume of the process chamber; and forming a silicon containing coating on an interior surface of the process chamber, wherein an outer surface of the silicon containing coating is at least 35 percent silicon.
    Type: Application
    Filed: April 12, 2010
    Publication date: October 21, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: DONGWON CHOI, DONG HYUNG LEE, TZE POON, MANOJ VELLAIKAL, PETER PORSHNEV, MAJEED FOAD
  • Patent number: 7732309
    Abstract: Methods for implanting ions into a substrate by a plasma immersion ion implanting process are provided. In one embodiment, the method for implanting ions into a substrate by a plasma immersion ion implantation process includes providing a substrate into a processing chamber, supplying a gas mixture including a reacting gas and a reducing gas into the chamber, and implanting ions from the gas mixture into the substrate. In another embodiment, the method includes providing a substrate into a processing chamber, supplying a gas mixture including reacting gas and a hydrogen containing reducing gas into the chamber, and implanting ions from the gas mixture into the substrate.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: June 8, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Shijian Li, Kartik Ramaswamy, Biagio Gallo, Dong Hyung Lee, Majeed A. Foad
  • Publication number: 20080138967
    Abstract: Methods for implanting ions into a substrate by a plasma immersion ion implanting process are provided. In one embodiment, the method for implanting ions into a substrate by a plasma immersion ion implantation process includes providing a substrate into a processing chamber, supplying a gas mixture including a reacting gas and a reducing gas into the chamber, and implanting ions from the gas mixture into the substrate. In another embodiment, the method includes providing a substrate into a processing chamber, supplying a gas mixture including reacting gas and a hydrogen containing reducing gas into the chamber, and implanting ions from the gas mixture into the substrate.
    Type: Application
    Filed: December 8, 2006
    Publication date: June 12, 2008
    Inventors: Shijian Li, Kartik Ramaswamy, Biagio Gallo, Dong Hyung Lee, Majeed A. Foad
  • Patent number: 7204888
    Abstract: Embodiments of the present invention provide an apparatus for constraining and supporting the lift pins to prevent or minimize lateral movement of the lift pins that causes substrate hand-off problems and associated degradation in substrate processing characteristics and results. In one embodiment, a lift pin assembly for manipulating a substrate above a support surface of a substrate support comprises a plurality of lift pins movable between an up position and a down position. The lift pins include top ends and bottom ends. The top ends are configured to be lifted above the support surface of the substrate support to contact a bottom surface of the substrate in the up position. The top ends are configured to be positioned at or below the support surface of the substrate support in the down position.
    Type: Grant
    Filed: May 1, 2003
    Date of Patent: April 17, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Toan Q. Tran, Daniel S. Herkalo, Yen-Kun V. Wang, Jin Ho Lee, Dong Hyung Lee, Jang Seok Oh, Won B. Bang
  • Publication number: 20040219006
    Abstract: Embodiments of the present invention provide an apparatus for constraining and supporting the lift pins to prevent or minimize lateral movement of the lift pins that causes substrate hand-off problems and associated degradation in substrate processing characteristics and results. In one embodiment, a lift pin assembly for manipulating a substrate above a support surface of a substrate support comprises a plurality of lift pins movable between an up position and a down position. The lift pins include top ends and bottom ends. The top ends are configured to be lifted above the support surface of the substrate support to contact a bottom surface of the substrate in the up position. The top ends are configured to be positioned at or below the support surface of the substrate support in the down position.
    Type: Application
    Filed: May 1, 2003
    Publication date: November 4, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Toan Q. Tran, Daniel S. Herkalo, Yen-Kun V. Wang, Jin Ho Lee, Dong Hyung Lee, Jang Seok Oh, Won B. Bang
  • Patent number: D477016
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: July 8, 2003
    Assignee: Eryun Co., Ltd.
    Inventor: Dong-Hyung Lee