Patents by Inventor DongQing Li

DongQing Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120177846
    Abstract: Methods of forming silicon oxide layers are described. The methods include concurrently combining plasma-excited (radical) steam with an unexcited silicon precursor. Nitrogen may be supplied through the plasma-excited route (e.g. by adding ammonia to the steam) and/or by choosing a nitrogen-containing unexcited silicon precursor. The methods result in depositing a silicon-oxygen-and-nitrogen-containing layer on a substrate. The oxygen content of the silicon-oxygen-and-nitrogen-containing layer is then increased to form a silicon oxide layer which may contain little or no nitrogen. The increase in oxygen content may be brought about by annealing the layer in the presence of an oxygen-containing atmosphere and the density of the film may be increased further by raising the temperature even higher in an inert environment.
    Type: Application
    Filed: September 19, 2011
    Publication date: July 12, 2012
    Applicant: Applied Materials, Inc.
    Inventors: DongQing Li, Jingmei Liang, Xiaolin Chen, Nitin K. Ingle
  • Publication number: 20120142192
    Abstract: The formation of a gap-filling silicon oxide layer with reduced volume fraction of voids is described. The deposition involves the formation of an oxygen-rich less-flowable liner layer before an oxygen-poor more-flowable gapfill layer. However, the liner layer is deposited within the same chamber as the gapfill layer. The liner layer and the gapfill layer may both be formed by combining a radical component with an unexcited silicon-containing precursor (i.e. not directly excited by application of plasma power). The liner layer has more oxygen content than the gapfill layer and deposits more conformally. The deposition rate of the gapfill layer may be increased by the presence of the liner layer. The gapfill layer may contain silicon, oxygen and nitrogen and be converted at elevated temperature to contain more oxygen and less nitrogen. The presence of the gapfill liner provides a source of oxygen underneath the gapfill layer to augment the gas phase oxygen introduced during the conversion.
    Type: Application
    Filed: June 3, 2011
    Publication date: June 7, 2012
    Applicant: Applied Materials, Inc.
    Inventors: DongQing Li, Jingmei Liang, Nitin K. Ingle
  • Patent number: 8188438
    Abstract: An electrokinetic microfluidic flow cytometer apparatus can include a substrate, a pair of signal and noise detection channels, and a particle detection circuit. The substrate includes an input port, an output port, and a microchannel that fluidly connects the input port and the output port to allow fluid to flow therebetween. The signal and noise detection channels are defined in the substrate and are fluidly connected to the microchannel from locations that are adjacent to each other. The signal and noise detection channels extend in opposite directions away from the microchannel to receive ambient electrical noise. The particle detection circuit generates a particle detection signal in response to a differential voltage across the signal and noise detection channels, which tracks changes in resistivity across an adjacent portion of the microchannel while at least substantially canceling a common component of the ambient electrical noise.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: May 29, 2012
    Assignee: Diagnostics Chips, LLC
    Inventor: Dongqing Li
  • Publication number: 20110217851
    Abstract: Methods, materials, and systems are described for forming conformal dielectric layers containing silicon and nitrogen (e.g., a silicon-nitrogen-hydrogen (Si—N—H) film) from a carbon-free silicon-and-nitrogen precursor and radical-nitrogen precursor. The carbon-free silicon-and-nitrogen precursor is predominantly excited by contact with the radical-nitrogen precursor. Because the silicon-and-nitrogen film is formed without carbon, the conversion of the film into hardened silicon oxide is done with less pore formation and less volume shrinkage. The deposited silicon-and-nitrogen-containing film may be wholly or partially converted to silicon oxide which allows the optical properties of the conformal dielectric layer to be selectable. The deposition of a thin silicon-and-nitrogen-containing film may be performed at low temperature to form a liner layer in a substrate trench.
    Type: Application
    Filed: February 10, 2011
    Publication date: September 8, 2011
    Applicant: Applied Materials, Inc.
    Inventors: Jingmei Liang, Xiaolin Chen, DongQing Li, Nitin K. Ingle
  • Publication number: 20110089328
    Abstract: An electrokinetic microfluidic flow cytometer apparatus can include a substrate, a pair of signal and noise detection channels, and a particle detection circuit. The substrate includes an input port, an output port, and a microchannel that fluidly connects the input port and the output port to allow fluid to flow therebetween. The signal and noise detection channels are defined in the substrate and are fluidly connected to the microchannel from locations that are adjacent to each other. The signal and noise detection channels extend in opposite directions away from the microchannel to receive ambient electrical noise.
    Type: Application
    Filed: March 8, 2010
    Publication date: April 21, 2011
    Inventor: Dongqing Li
  • Patent number: 7799698
    Abstract: A deposition/etching/deposition process is provided for filling a gap in a surface of a substrate. A liner is formed over the substrate so that distinctive reaction products are formed when it is exposed to a chemical etchant. The detection of such reaction products thus indicates that the portion of the film deposited during the first etching has been removed to an extent that further exposure to the etchant may remove the liner and expose underlying structures. Accordingly, the etching is stopped upon detection of distinctive reaction products and the next deposition in the deposition/etching/deposition process is begun.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: September 21, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Lin Zhang, Xiaolin Chen, DongQing Li, Thanh N. Pham, Farhad K. Moghadam, Zhuang Li, Padmanabhan Krishnaraj
  • Patent number: 7795014
    Abstract: A disposable reactor module, monitoring/optical detection system and related hardware for, inter alia, chemical reactions including Polymerase Chain Reactions.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: September 14, 2010
    Assignee: InstantLabs Medical Diagnostics Corp.
    Inventor: Dongqing Li
  • Patent number: 7745351
    Abstract: Methods of forming a dielectric layer where the tensile stress of the layer is increased by a plasma treatment at an elevated position are described. In one embodiment, oxide and nitride layers are deposited on a substrate and patterned to form an opening. A trench is etched into the substrate. The substrate is transferred into a chamber suitable for dielectric deposition. A dielectric layer is deposited over the substrate, filling the trench and covering mesa regions adjacent to the trench. The substrate is raised to an elevated position above the substrate support and exposed to a plasma which increases the tensile stress of the substrate. The substrate is removed from the dielectric deposition chamber, and portions of the dielectric layer are removed so that the dielectric layer is even with the topmost portion of the nitride layer. The nitride and pad oxide layers are removed to form the STI structure.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: June 29, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Xiaolin Chen, Srinivas D. Nemani, DongQing Li, Jeffrey C. Munro, Marlon E. Menezes
  • Patent number: 7691753
    Abstract: A deposition/etching/deposition process is provided for filling a gap in a surface of a substrate. A liner is formed over the substrate so that distinctive reaction products are formed when it is exposed to a chemical etchant. The detection of such reaction products thus indicates that the portion of the film deposited during the first etching has been removed to an extent that further exposure to the etchant may remove the liner and expose underlying structures. Accordingly, the etching is stopped upon detection of distinctive reaction products and the next deposition in the deposition/etching/deposition process is begun.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: April 6, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Lin Zhang, Xiaolin Chen, DongQing Li, Thanh N. Pham, Farhad K. Moghadam, Zhuang Li, Padmanabhan Krishnaraj
  • Publication number: 20100041050
    Abstract: A disposable reactor module, monitoring/optical detection system and related hardware for, inter alia, chemical reactions including Polymerase Chain Reactions.
    Type: Application
    Filed: August 4, 2009
    Publication date: February 18, 2010
    Applicant: Instantlabs Medical Diagnostic Corp.
    Inventor: Dongqing Li
  • Patent number: 7569382
    Abstract: A disposable reactor module, monitoring/optical detection system and related hardware for, inter alia, chemical reactions including Polymerase Chain Reactions.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: August 4, 2009
    Assignee: Instantlabs Medical Diagnostic Corp.
    Inventor: Dongqing Li
  • Publication number: 20090035918
    Abstract: Methods of forming a dielectric layer where the tensile stress of the layer is increased by a plasma treatment at an elevated position are described. In one embodiment, oxide and nitride layers are deposited on a substrate and patterned to form an opening. A trench is etched into the substrate. The substrate is transferred into a chamber suitable for dielectric deposition. A dielectric layer is deposited over the substrate, filling the trench and covering mesa regions adjacent to the trench. The substrate is raised to an elevated position above the substrate support and exposed to a plasma which increases the tensile stress of the substrate. The substrate is removed from the dielectric deposition chamber, and portions of the dielectric layer are removed so that the dielectric layer is even with the topmost portion of the nitride layer. The nitride and pad oxide layers are removed to form the STI structure.
    Type: Application
    Filed: October 15, 2008
    Publication date: February 5, 2009
    Applicant: Applies Materials, Inc.
    Inventors: Xiaolin Chen, Srinivas D. Nemani, DongQing Li, Jeffrey C. Munro, Marlon E. Menezes
  • Patent number: 7465680
    Abstract: A plasma treatment process for increasing the tensile stress of a silicon wafer is described. Following deposition of a dielectric layer on a substrate, the substrate is lifted to an elevated position above the substrate receiving surface and exposed to a plasma treatment process which treats both the top and bottom surface of the wafer and increases the tensile stress of the deposited layer. Another embodiment of the invention involves biasing of the substrate prior to plasma treatment to bombard the wafer with plasma ions and raise the temperature of the substrate. In another embodiment of the invention, a two-step plasma treatment process can be used where the substrate is first exposed to a plasma at a processing position directly after deposition, and then raised to an elevated position where both the top and bottom of the wafer are exposed to the plasma.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: December 16, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Xiaolin Chen, Srinivas D. Nemani, DongQing Li, Jeffrey C. Munro, Marlon E. Menezes
  • Publication number: 20080067068
    Abstract: The present invention relates to an apparatus and methods of separating particles or cells according to their sizes, wherein the size of each of the particles or cells is characterized by a corresponding diameter. In one embodiment, the method includes the steps of providing a microchannel structure having at least one channel that is defined by a first sidewall and a second, opposite sidewall and has an insulating protrusion formed on one of the first sidewall and the second, opposite sidewall, introducing a plurality of particles or cells in a liquid medium into the at least one channel, and generating a non-uniform electrical field in the at least one channel such that when the plurality of particles or cells passes by the insulating protrusion, the plurality of particles or cells each receives a dielectrophoretic force proportional to its diameters, thereby being separable according to their sizes. The method further has the step of collecting particles or cells after the separation of particles or cells.
    Type: Application
    Filed: September 19, 2006
    Publication date: March 20, 2008
    Applicant: Vanderbilt University
    Inventor: Dongqing Li
  • Publication number: 20080070311
    Abstract: A flow cytometer. In one embodiment the flow cytometer includes a microchannel structure adapted for transporting a fluid medium containing one or more types of particles; means for generating electrokinetically microfluidic flows to transport the fluid medium in the microchannel structure so as to differentiate the one or more types of particles of the fluid medium therein; and an optical detection system coupled with the microchannel structure for detecting the differentiated one or more types of particles of the fluid medium.
    Type: Application
    Filed: September 19, 2006
    Publication date: March 20, 2008
    Applicant: Vanderbilt University
    Inventor: Dongqing Li
  • Patent number: 7294588
    Abstract: A process is provided for depositing an silicon oxide film on a substrate disposed in a process chamber. A process gas that includes a halogen source, a fluent gas, a silicon source, and an oxidizing gas reactant is flowed into the process chamber. A plasma having an ion density of at least 1011 ions/cm3 is formed from the process gas. The silicon oxide film is deposited over the substrate with a halogen concentration less than 1.0%. The silicon oxide film is deposited with the plasma using a process that has simultaneous deposition and sputtering components. The flow rate of the halogen source to the process chamber to the flow rate of the silicon source to the process chamber is substantially between 0.5 and 3.0.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: November 13, 2007
    Assignee: Applied Materials, Inc.
    Inventors: M. Ziaul Karim, DongQing Li, Jeong Soo Byun, Thanh N. Pham
  • Publication number: 20070166204
    Abstract: A disposable reactor module, monitoring/optical detection system and related hardware for, inter alia, chemical reactions including Polymerase Chain Reactions.
    Type: Application
    Filed: October 4, 2006
    Publication date: July 19, 2007
    Inventor: Dongqing Li
  • Patent number: 7196021
    Abstract: A method for forming a silicon oxide layer over a substrate disposed in a high density plasma substrate processing chamber. The method includes flowing a process gas that includes a silicon-containing source, an oxygen-containing source and a fluorine-containing source into the substrate processing chamber and forming a plasma from said process gas. The substrate is heated to a temperature above 450° C. during deposition of said silicon oxide layer and the deposited layer has a fluorine content of less than 1.0 atomic percent.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: March 27, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Zhengquan Tan, Dongqing Li, Walter Zygmunt
  • Publication number: 20070054504
    Abstract: A plasma treatment process for increasing the tensile stress of a silicon wafer is described. Following deposition of a dielectric layer on a substrate, the substrate is lifted to an elevated position above the substrate receiving surface and exposed to a plasma treatment process which treats both the top and bottom surface of the wafer and increases the tensile stress of the deposited layer. Another embodiment of the invention involves biasing of the substrate prior to plasma treatment to bombard the wafer with plasma ions and raise the temperature of the substrate. In another embodiment of the invention, a two-step plasma treatment process can be used where the substrate is first exposed to a plasma at a processing position directly after deposition, and then raised to an elevated position where both the top and bottom of the wafer are exposed to the plasma.
    Type: Application
    Filed: September 7, 2005
    Publication date: March 8, 2007
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Xiaolin Chen, Srinivas Nemani, DongQing Li, Jeffrey Munro, Marlon Menezes
  • Publication number: 20060286764
    Abstract: A deposition/etching/deposition process is provided for filling a gap in a surface of a substrate. A liner is formed over the substrate so that distinctive reaction products are formed when it is exposed to a chemical etchant. The detection of such reaction products thus indicates that the portion of the film deposited during the first etching has been removed to an extent that further exposure to the etchant may remove the liner and expose underlying structures. Accordingly, the etching is stopped upon detection of distinctive reaction products and the next deposition in the deposition/etching/deposition process is begun.
    Type: Application
    Filed: June 5, 2006
    Publication date: December 21, 2006
    Applicant: Applied Materials, Inc.
    Inventors: Lin Zhang, Xiaolin Chen, DongQing Li, Thanh Pham, Farhad Moghadam, Zhuang Li, Padmanabhan Krishnaraj