Patents by Inventor Dongqing Yang
Dongqing Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250125154Abstract: Exemplary methods and systems of semiconductor processing may include etching a portion of a silicon-containing material from a substrate disposed within a processing region of a semiconductor processing chamber. Methods may include forming a low quality oxide within one or more of the recesses, where the low quality oxide and a silicon-containing material each contain an exposed surface. Methods include contacting the low quality oxide and the high quality semiconductor material with a passivating agent selective to a surface defect of the low quality oxide. Methods include contacting the substrate with an etching agent and/or a cleaning agent, where the contacting with the cleaning agent removes the high quality semiconductor material at an equal or faster rate than the low quality oxide.Type: ApplicationFiled: October 12, 2023Publication date: April 17, 2025Applicant: Applied Materials, Inc.Inventors: Lala Zhu, Yimin Huang, Shi Che, Yi Jin, Dongqing Yang, Lakmal C. Kalutarage, Anchuan Wang, Nitin K. Ingle
-
Publication number: 20250118536Abstract: Semiconductor processing systems and methods for increased etch selectivity and rate are provided. Methods include etching a target material of a semiconductor substrate by flowing one or more plasma precursors through a microwave applicator into a remote plasma region of a semiconductor processing chamber. Generating a remote plasma within the remote plasma region at a microwave frequency, where the generated remote plasma comprises a density of greater than 1×1010 per cm3, an ion energy of less than or about 50 eV, or a combination thereof. Flowing the plasma effluents into a processing region of the semiconductor processing chamber. The microwave applicator includes a resonator body and a plate, where the resonator body is formed from or coated with a first dielectric material and the plate is formed from or coated with a second dielectric material.Type: ApplicationFiled: October 10, 2023Publication date: April 10, 2025Applicant: Applied Materials, Inc.Inventors: Yi-Hsuan Hsiao, Dongqing Yang, Kelvin Chan, Philip A. Kraus, Thai Cheng Chua, Ping-Hwa Hsieh, Nitin K. Ingle
-
Publication number: 20240306391Abstract: Two-dimensional (2D) materials formed in very thin layers improve the operation of semiconductor devices. However, forming a contact on 2D material tends to damage and penetrate the 2D material. A relatively gentle etch process has been developed that is very selective to the 2D material and allows vertical holes to be etched down to the 2D material without damaging or penetrating the 2D material. A low-power deposition process forms a protective liner when performing the metal fill to further prevent damage to the 2D material when forming the metal contacts in the holes. These processes allow a vertical metal contact to be formed on a planar 2D material or a vertical sidewall contact be formed in a 3D NAND without damaging the 2D material. This increases the contact area, reduces the contact resistance, and improves the performance of the 2D material in the device.Type: ApplicationFiled: March 6, 2024Publication date: September 12, 2024Applicant: Applied Materials, Inc.Inventors: Hao-Ling Tang, Arvind Kumar, Mahendra Pakala, Keith Tatseun Wong, Yi-Hsuan Hsiao, Dongqing Yang, Mark Conrad, Rio Soedibyo, Minrui Yu
-
Publication number: 20240087910Abstract: A semiconductor processing method may include providing a fluorine-containing precursor to a processing region of a semiconductor processing chamber. A substrate may be disposed within the processing region. The substrate may include an exposed region of silicon-and-oxygen-containing material. The substrate may include an exposed region of a liner material. The methods may include providing a hydrogen-containing precursor to the semiconductor processing region. The methods may include contacting the substrate with the fluorine-containing precursor and the hydrogen-containing precursor. The methods may include selectively removing at least a portion of the exposed silicon-and-oxygen-containing material.Type: ApplicationFiled: September 14, 2022Publication date: March 14, 2024Applicant: Applied Materials, Inc.Inventors: Lala Zhu, Shi Che, Dongqing Yang, Nitin K. Ingle
-
Patent number: 11915950Abstract: Exemplary support assemblies may include a top puck and a backing plate coupled with the top puck. The support assemblies may include a cooling plate coupled with the backing plate. The support assemblies may include a heater coupled between the cooling plate and the backing plate. The support assemblies may also include a back plate coupled with the backing plate about an exterior of the backing plate. The back plate may at least partially define a volume, and the heater and the cooling plate may be housed within the volume.Type: GrantFiled: January 25, 2022Date of Patent: February 27, 2024Assignee: Applied Materials, Inc.Inventors: Mehmet Tugrul Samir, Dongqing Yang, Dmitry Lubomirsky, Peter Hillman, Soonam Park, Martin Yue Choy, Lala Zhu
-
Patent number: 11515179Abstract: Exemplary semiconductor processing systems may include a processing chamber, and may include a remote plasma unit coupled with the processing chamber. Exemplary systems may also include a mixing manifold coupled between the remote plasma unit and the processing chamber. The mixing manifold may be characterized by a first end and a second end opposite the first end, and may be coupled with the processing chamber at the second end. The mixing manifold may define a central channel through the mixing manifold, and may define a port along an exterior of the mixing manifold. The port may be fluidly coupled with a first trench defined within the first end of the mixing manifold. The first trench may be characterized by an inner radius at a first inner sidewall and an outer radius, and the first trench may provide fluid access to the central channel through the first inner sidewall.Type: GrantFiled: June 29, 2020Date of Patent: November 29, 2022Assignee: Applied Materials, Inc.Inventors: Mehmet Tugrul Samir, Dongqing Yang
-
Patent number: 11417534Abstract: Exemplary methods for removing nitride may include flowing a fluorine-containing precursor into a remote plasma region of a semiconductor processing chamber. The methods may further include forming a plasma within the remote plasma region to generate plasma effluents of the fluorine-containing precursor and flowing the plasma effluents into a processing region of the semiconductor processing chamber housing a substrate. The substrate may include a high-aspect-ratio feature. The substrate may further include a region of exposed nitride and a region of exposed oxide. The methods may further include providing a hydrogen-containing precursor to the processing region to produce an etchant. At least a portion of the exposed nitride may be removed with the etchant.Type: GrantFiled: September 21, 2018Date of Patent: August 16, 2022Assignee: Applied Materials, Inc.Inventors: Ming Xia, Dongqing Yang, Ching-Mei Hsu
-
Patent number: 11361939Abstract: Exemplary semiconductor processing systems may include a processing chamber, and may include a remote plasma unit coupled with the processing chamber. Exemplary systems may also include an adapter coupled with the remote plasma unit. The adapter may include a first end and a second end opposite the first end. The adapter may define a central channel through the adapter. The adapter may define an exit from a second channel at the second end, and the adapter may define an exit from a third channel at the second end. The central channel, the second channel, and the third channel may each be fluidly isolated from one another within the adapter.Type: GrantFiled: June 21, 2019Date of Patent: June 14, 2022Assignee: Applied Materials, Inc.Inventors: Mehmet Tugrul Samir, Dongqing Yang, Dmitry Lubomirsky, Peter Hillman, Soonam Park, Martin Yue Choy, Lala Zhu
-
Publication number: 20220148894Abstract: Exemplary support assemblies may include a top puck and a backing plate coupled with the top puck. The support assemblies may include a cooling plate coupled with the backing plate. The support assemblies may include a heater coupled between the cooling plate and the backing plate. The support assemblies may also include a back plate coupled with the backing plate about an exterior of the backing plate. The back plate may at least partially define a volume, and the heater and the cooling plate may be housed within the volume.Type: ApplicationFiled: January 25, 2022Publication date: May 12, 2022Applicant: Applied Materials, Inc.Inventors: Mehmet Tugrul Samir, Dongqing Yang, Dmitry Lubomirsky, Peter Hillman, Soonam Park, Martin Yue Choy, Lala Zhu
-
Patent number: 11276590Abstract: Exemplary support assemblies may include a top puck and a backing plate coupled with the top puck. The support assemblies may include a cooling plate coupled with the backing plate. The support assemblies may include a heater coupled between the cooling plate and the backing plate. The support assemblies may also include a back plate coupled with the backing plate about an exterior of the backing plate. The back plate may at least partially define a volume, and the heater and the cooling plate may be housed within the volume.Type: GrantFiled: May 17, 2017Date of Patent: March 15, 2022Assignee: Applied Materials, Inc.Inventors: Mehmet Tugrul Samir, Dongqing Yang, Dmitry Lubomirsky, Peter Hillman, Soonam Park, Martin Yue Choy, Lala Zhu
-
Patent number: 11276559Abstract: Exemplary semiconductor processing systems may include a processing chamber, and may include a remote plasma unit coupled with the processing chamber. Exemplary systems may also include an adapter coupled with the remote plasma unit. The adapter may include a first end and a second end opposite the first end. The adapter may define a central channel through the adapter. The adapter may define an exit from a second channel at the second end, and the adapter may define an exit from a third channel at the second end. The central channel, the second channel, and the third channel may each be fluidly isolated from one another within the adapter.Type: GrantFiled: May 17, 2017Date of Patent: March 15, 2022Assignee: Applied Materials, Inc.Inventors: Mehmet Tugrul Samir, Dongqing Yang, Dmitry Lubomirsky, Peter Hillman, Soonam Park, Martin Yue Choy, Lala Zhu
-
Patent number: 11164724Abstract: Embodiments of the present disclosure generally provide improved methods for processing substrates with improved process stability, increased mean wafers between clean, and/or improved within wafer uniformity. One embodiment provides a method for seasoning one or more chamber components in a process chamber. The method includes placing a dummy substrate in the process chamber, flowing a processing gas mixture to the process chamber to react with the dummy substrate and generate a byproduct on the dummy substrate, and annealing the dummy substrate to sublimate the byproduct while at least one purge conduit of the process chamber is closed.Type: GrantFiled: June 5, 2018Date of Patent: November 2, 2021Assignee: APPLIED MATERIALS, INC.Inventors: Sang Won Kang, Nicholas Celeste, Dmitry Lubomirsky, Peter Hillman, Douglas Brenton Hayden, Dongqing Yang
-
Patent number: 11101136Abstract: Embodiments of the present technology may include a method of etching. The method may include mixing plasma effluents with a gas in a first section of a chamber to form a first mixture. The method may also include flowing the first mixture to a substrate in a second section of the chamber. The first section and the second section may include nickel plated material. The method may further include reacting the first mixture with the substrate to etch a first layer selectively over a second layer. In addition, the method may include forming a second mixture including products from reacting the first mixture with the substrate.Type: GrantFiled: May 20, 2019Date of Patent: August 24, 2021Assignee: Applied Materials, Inc.Inventors: Dongqing Yang, Tien Fak Tan, Peter Hillman, Lala Zhu, Nitin K. Ingle, Dmitry Lubomirsky, Christopher Snedigar, Ming Xia
-
Patent number: 10964512Abstract: Exemplary semiconductor processing systems may include a processing chamber, and may include a remote plasma unit coupled with the processing chamber. Exemplary systems may also include a mixing manifold coupled between the remote plasma unit and the processing chamber. The mixing manifold may be characterized by a first end and a second end opposite the first end, and may be coupled with the processing chamber at the second end. The mixing manifold may define a central channel through the mixing manifold, and may define a port along an exterior of the mixing manifold. The port may be fluidly coupled with a first trench defined within the first end of the mixing manifold. The first trench may be characterized by an inner radius at a first inner sidewall and an outer radius, and the first trench may provide fluid access to the central channel through the first inner sidewall.Type: GrantFiled: March 30, 2018Date of Patent: March 30, 2021Assignee: Applied Materials, Inc.Inventors: Mehmet Tugrul Samir, Dongqing Yang, Dmitry Lubomirsky
-
Publication number: 20210043448Abstract: Processing platforms having a central transfer station with a robot and an environment having greater than or equal to about 0.1% by weight water vapor, a pre-clean chamber connected to a side of the transfer station and a batch processing chamber connected to a side of the transfer station. The processing platform configured to pre-clean a substrate to remove native oxides from a first surface, form a blocking layer using a alkylsilane and selectively deposit a film. Methods of using the processing platforms and processing a plurality of wafers are also described.Type: ApplicationFiled: October 27, 2020Publication date: February 11, 2021Applicant: Applied Materials, Inc.Inventors: Ning Li, Mihaela A. Balseanu, Li-Qun Xia, Dongqing Yang, Lala Zhu, Malcolm J. Bevan, Theresa Kramer Guarini, Wenbo Yan
-
Publication number: 20200328098Abstract: Exemplary semiconductor processing systems may include a processing chamber, and may include a remote plasma unit coupled with the processing chamber. Exemplary systems may also include a mixing manifold coupled between the remote plasma unit and the processing chamber. The mixing manifold may be characterized by a first end and a second end opposite the first end, and may be coupled with the processing chamber at the second end. The mixing manifold may define a central channel through the mixing manifold, and may define a port along an exterior of the mixing manifold. The port may be fluidly coupled with a first trench defined within the first end of the mixing manifold. The first trench may be characterized by an inner radius at a first inner sidewall and an outer radius, and the first trench may provide fluid access to the central channel through the first inner sidewall.Type: ApplicationFiled: June 29, 2020Publication date: October 15, 2020Applicant: Applied Materials, Inc.Inventors: Mehmet Tugrul Samir, Dongqing Yang
-
Patent number: 10699921Abstract: Exemplary semiconductor processing systems may include a processing chamber, and may include a remote plasma unit coupled with the processing chamber. Exemplary systems may also include a mixing manifold coupled between the remote plasma unit and the processing chamber. The mixing manifold may be characterized by a first end and a second end opposite the first end, and may be coupled with the processing chamber at the second end. The mixing manifold may define a central channel through the mixing manifold, and may define a port along an exterior of the mixing manifold. The port may be fluidly coupled with a first trench defined within the first end of the mixing manifold. The first trench may be characterized by an inner radius at a first inner sidewall and an outer radius, and the first trench may provide fluid access to the central channel through the first inner sidewall.Type: GrantFiled: June 21, 2019Date of Patent: June 30, 2020Assignee: Applied Materials, Inc.Inventors: Mehmet Tugrul Samir, Dongqing Yang
-
Patent number: 10679870Abstract: Exemplary semiconductor processing systems may include a processing chamber, and may include a remote plasma unit coupled with the processing chamber. Exemplary systems may also include a mixing manifold coupled between the remote plasma unit and the processing chamber. The mixing manifold may be characterized by a first end and a second end opposite the first end, and may be coupled with the processing chamber at the second end. The mixing manifold may define a central channel through the mixing manifold, and may define a port along an exterior of the mixing manifold. The port may be fluidly coupled with a first trench defined within the first end of the mixing manifold. The first trench may be characterized by an inner radius at a first inner sidewall and an outer radius, and the first trench may provide fluid access to the central channel through the first inner sidewall.Type: GrantFiled: February 15, 2018Date of Patent: June 9, 2020Assignee: Applied Materials, Inc.Inventors: Mehmet Tugrul Samir, Dongqing Yang
-
Publication number: 20200098586Abstract: Exemplary methods for removing nitride may include flowing a fluorine-containing precursor into a remote plasma region of a semiconductor processing chamber. The methods may further include forming a plasma within the remote plasma region to generate plasma effluents of the fluorine-containing precursor and flowing the plasma effluents into a processing region of the semiconductor processing chamber housing a substrate. The substrate may include a high-aspect-ratio feature. The substrate may further include a region of exposed nitride and a region of exposed oxide. The methods may further include providing a hydrogen-containing precursor to the processing region to produce an etchant. At least a portion of the exposed nitride may be removed with the etchant.Type: ApplicationFiled: September 21, 2018Publication date: March 26, 2020Applicant: Applied Materials, Inc.Inventors: Ming Xia, Dongqing Yang, Ching-Mei Hsu
-
Publication number: 20190333786Abstract: Exemplary semiconductor processing systems may include a processing chamber, and may include a remote plasma unit coupled with the processing chamber. Exemplary systems may also include a mixing manifold coupled between the remote plasma unit and the processing chamber. The mixing manifold may be characterized by a first end and a second end opposite the first end, and may be coupled with the processing chamber at the second end. The mixing manifold may define a central channel through the mixing manifold, and may define a port along an exterior of the mixing manifold. The port may be fluidly coupled with a first trench defined within the first end of the mixing manifold. The first trench may be characterized by an inner radius at a first inner sidewall and an outer radius, and the first trench may provide fluid access to the central channel through the first inner sidewall.Type: ApplicationFiled: June 21, 2019Publication date: October 31, 2019Applicant: Applied Materials, Inc.Inventors: Mehmet Tugrul Samir, Dongqing Yang