Patents by Inventor Dorin Comaniciu

Dorin Comaniciu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230094690
    Abstract: An AI algorithm may be used in a clinical setting to perform one or more tasks to assist medical personnel. The results produced by the AI algorithm may affect not only patient care, but also the cost of the care. The AI algorithm may be trained on auxiliary data to incorporate the impacts on patient care and cost.
    Type: Application
    Filed: September 28, 2021
    Publication date: March 30, 2023
    Inventors: Puneet Sharma, Philipp Hoelzer, Dorin Comaniciu
  • Publication number: 20230093752
    Abstract: One or more tractograms of a global tractography of a tissue of interest are determined. At least one instance of diffusion magnetic resonance imaging data of the tissue of interest is obtained. A trained machine-learning algorithm generates the one or more tractograms based on the at least one instance of the diffusion magnetic resonance imaging data.
    Type: Application
    Filed: September 8, 2022
    Publication date: March 23, 2023
    Inventors: Mahmoud Mostapha, Boris Mailhe, Dorin Comaniciu, Nirmal Janardhanan, Simon Arberet, Hongki Lim, Mariappan S. Nadar
  • Patent number: 11610308
    Abstract: Systems and methods are provided for classifying an abnormality in a medical image. An input medical image depicting a lesion is received. The lesion is localized in the input medical image using a trained localization network to generate a localization map. The lesion is classified based on the input medical image and the localization map using a trained classification network. The classification of the lesion is output. The trained localization network and the trained classification network are jointly trained.
    Type: Grant
    Filed: June 28, 2022
    Date of Patent: March 21, 2023
    Assignee: Siemens Healthcare GmbH
    Inventors: Ali Kamen, Tongbai Meng, Mamadou Diallo, Bin Lou, Xin Yu, David Jean Winkel, Dorin Comaniciu, Robert Grimm, Berthold Kiefer, Heinrich von Busch
  • Patent number: 11605447
    Abstract: A computer-implemented method for executing patient management workflows includes acquiring a pre-test dataset of clinically relevant information related to a patient and using a first intelligent agent to identify a diagnostic test for the patient based on the pre-test dataset. Following performance of the diagnostic test, a second intelligent agent is used to select a processing technique to be applied to data collected from the diagnostic test to obtain a diagnostic marker. Following application of the processing technique to the data collected from the diagnostic test, a third intelligent agent is used to generate an optimal patient management plan based on the pre-test dataset, the data collected from the diagnostic test, and the diagnostic marker.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: March 14, 2023
    Assignee: Siemens Healthcare GmbH
    Inventors: Tiziano Passerini, Puneet Sharma, Dorin Comaniciu
  • Publication number: 20230057653
    Abstract: Systems and methods for providing a means for improving the expressiveness and/or robustness of a machine learning system's result, based on imaging data and/or to make it possible to combine imaging data with non-imaging data to improve statements, which are deduced from the imaging data. The object is achieved by a computer implemented method, and uncertainty quantifier, medical system and a computer program product, and includes receiving a set of input data quantified as uncertainty, providing an information fusion algorithm, and applying the received set of input data on the provided information fusion algorithm, while modeling the propagation of uncertainty through the information fusion algorithm to predict an uncertainty for the medical assessment as a result (r), provided by the machine-learning system (M), based on the provided set of input data.
    Type: Application
    Filed: August 12, 2022
    Publication date: February 23, 2023
    Inventors: Florin-Cristian Ghesu, Awais Mansoor, Sasa Grbic, Ramya Vunikili, Sanjeev Kumar Karn, Rajeev Bhatt Ambati, Oladimeji Farri, Bogdan Georgescu, Dorin Comaniciu
  • Patent number: 11576621
    Abstract: Rather than rely on variation from physician to physician and limited imaging information for assessing plaque vulnerability of a patient, medical imaging and other information are used by a machine-implemented classifier to predict plaque rupture. Anatomical, morphological, hemodynamic, and biochemical features are used in combination to classify plaque.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: February 14, 2023
    Assignee: Siemens Healthcare GmbH
    Inventors: Puneet Sharma, Dorin Comaniciu
  • Patent number: 11557036
    Abstract: Methods and systems for image registration using an intelligent artificial agent are disclosed. In an intelligent artificial agent based registration method, a current state observation of an artificial agent is determined based on the medical images to be registered and current transformation parameters. Action-values are calculated for a plurality of actions available to the artificial agent based on the current state observation using a machine learning based model, such as a trained deep neural network (DNN). The actions correspond to predetermined adjustments of the transformation parameters. An action having a highest action-value is selected from the plurality of actions and the transformation parameters are adjusted by the predetermined adjustment corresponding to the selected action. The determining, calculating, and selecting steps are repeated for a plurality of iterations, and the medical images are registered using final transformation parameters resulting from the plurality of iterations.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: January 17, 2023
    Assignee: Siemens Healthcare GmbH
    Inventors: Rui Liao, Shun Miao, Pierre de Tournemire, Julian Krebs, Li Zhang, Bogdan Georgescu, Sasa Grbic, Florin Cristian Ghesu, Vivek Kumar Singh, Daguang Xu, Tommaso Mansi, Ali Kamen, Dorin Comaniciu
  • Patent number: 11515030
    Abstract: An artificial agent based cognitive operating room system and a method thereof providing automated assistance for a surgical procedure are disclosed. Data related to the surgical procedure from multiple data sources is fused based on a current context. The data includes medical images of a patient acquired using one or more medical imaging modalities. Real-time quantification of patient measurements based on the data from the multiple data sources is performed based on the current context. Short-term predictions in the surgical procedure are forecasted based on the current context, the fused data, and the real-time quantification of the patient measurements. Suggestions for next steps in the surgical procedure and relevant information in the fused data are determined based on the current context and the short-term predictions. The suggestions for the next steps and the relevant information in the fused data are presented to an operator.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: November 29, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Tommaso Mansi, Ankur Kapoor, Thomas Pheiffer, Vincent Ordy, Dorin Comaniciu
  • Publication number: 20220358648
    Abstract: Systems and methods are provided for classifying an abnormality in a medical image. An input medical image depicting a lesion is received. The lesion is localized in the input medical image using a trained localization network to generate a localization map. The lesion is classified based on the input medical image and the localization map using a trained classification network. The classification of the lesion is output. The trained localization network and the trained classification network are jointly trained.
    Type: Application
    Filed: June 28, 2022
    Publication date: November 10, 2022
    Inventors: Ali Kamen, Tongbai Meng, Mamadou Diallo, Bin Lou, Xin Yu, David Jean Winkel, Dorin Comaniciu, Robert Grimm, Berthold Kiefer, Heinrich von Busch
  • Publication number: 20220346742
    Abstract: CT scan parameters for performing a CT scan of an anatomical target region of a patient are determined and/or adjusted. An initial set of the CT scan parameters for starting to perform the CT scan is determined based on an initial set of attenuation curves associated with the anatomical target region of the patient. The initial set of attenuation curves are determined based on optical imaging data depicting the patient.
    Type: Application
    Filed: March 30, 2022
    Publication date: November 3, 2022
    Inventors: Brian Teixeira, Vivek Singh, Ankur Kapoor, Andreas Prokein, Dorin Comaniciu
  • Patent number: 11450431
    Abstract: A method of identifying an optimum treatment for a patient suffering from coronary artery disease, comprising: (i) providing patient information selected from: (a) status in the patient of one or more coronary disease associated biomarkers; (b) one or more items of medical history information selected from prior condition history, intervention history and medication history; (c) one or more items of diagnostic history, if the patient has a diagnostic history; and (d) one or more items of demographic data; (ii) aggregating the patient information in: (a) a Bayesian network; (b) a machine learning and neural network; (c) a rule-based system; and (d) a regression-based system; (iii) deriving a predicted probabilistic adverse event outcome for each intervention comprising percutaneous coronary intervention by placement of a bare metal stent, or a drug-coated stent; or by coronary artery bypass grafting; and (iv) determining the intervention having the lowest predicted probabilistic adverse outcome.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: September 20, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Ali Kamen, Maneesh Kumar Singh, Sebastian Poelsterl, Lance Anthony Ladic, Dorin Comaniciu
  • Publication number: 20220293247
    Abstract: Systems and method for performing a medical imaging analysis task for making a clinical decision are provided. One or more input medical images of a patient are received. A medical imaging analysis task is performed from the one or more input medical images using a machine learning based network. The machine learning based network generates a probability score associated with the medical imaging analysis task. An uncertainty measure associated with the probability score is determined. A clinical decision is made based on the probability score and the uncertainty measure.
    Type: Application
    Filed: March 12, 2021
    Publication date: September 15, 2022
    Inventors: Eli Gibson, Bogdan Georgescu, Pascal Ceccaldi, Youngjin Yoo, Jyotipriya Das, Thomas Re, Eva Eibenberger, Andrei Chekkoury, Barbara Brehm, Thomas Flohr, Dorin Comaniciu, Pierre-Hugo Trigan
  • Publication number: 20220292742
    Abstract: Systems and methods for generating a synthetic image are provided. An input medical image in a first modality is received. A synthetic image in a second modality is generated from the input medical image. The synthetic image is upsampled to increase a resolution of the synthetic image. An output image is generated to simulate image processing of the upsampled synthetic image. The output image is output.
    Type: Application
    Filed: March 11, 2021
    Publication date: September 15, 2022
    Inventors: Boris Mailhe, Florin-Cristian Ghesu, Siqi Liu, Sasa Grbic, Sebastian Vogt, Dorin Comaniciu, Awais Mansoor, Sebastien Piat, Steffen Kappler, Ludwig Ritschl
  • Patent number: 11443201
    Abstract: For machine learning for a medical imager, results created for individual patients are used to generate the ground truth. The acceptance or change for examining an individual patient is used as the ground truth instead of using a further expert study for the purposes of machine training. In this way, the medical imager creates both samples and ground truth as part of every-day, on-going examinations of patients in the production environment. Machine training is performed based on these samples, and the machine-learned network may then be applied for imaging further patients. For example, the medical imager self-optimizes or self-learns, allowing for updating the machine-learned network more rapidly (e.g., keeping pace with changes in practice in a lower cost and less time-consuming approach and/or updating localized to a practice) in the production environment.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: September 13, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Puneet Sharma, Dorin Comaniciu
  • Patent number: 11430121
    Abstract: Systems and methods for assessing a disease are provided. Medical imaging data of lungs of a patient is received. The lungs are segmented from the medical imaging data and abnormality regions associated with a disease are segmented from the medical imaging data. An assessment of the disease is determined based on the segmented lungs and the segmented abnormality regions. The disease may be COVID-19 (coronavirus disease 2019) or diseases, such as, e.g., SARS (severe acute respiratory syndrome), MERS (Middle East respiratory syndrome), or other types of viral and non-viral pneumonia.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: August 30, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Shikha Chaganti, Sasa Grbic, Bogdan Georgescu, Zhoubing Xu, Siqi Liu, Youngjin Yoo, Thomas Re, Guillaume Chabin, Thomas Flohr, Valentin Ziebandt, Dorin Comaniciu, Brian Teixeira, Sebastien Piat
  • Patent number: 11403750
    Abstract: Systems and methods are provided for classifying an abnormality in a medical image. An input medical image depicting a lesion is received. The lesion is localized in the input medical image using a trained localization network to generate a localization map. The lesion is classified based on the input medical image and the localization map using a trained classification network. The classification of the lesion is output. The trained localization network and the trained classification network are jointly trained.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: August 2, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Ali Kamen, Ahmet Tuysuzoglu, Bin Lou, Bibo Shi, Nicolas Von Roden, Kareem Abdelrahman, Berthold Kiefer, Robert Grimm, Heinrich von Busch, Mamadou Diallo, Tongbai Meng, Dorin Comaniciu, David Jean Winkel, Xin Yu
  • Patent number: 11398304
    Abstract: Since the final output for medical imaging is the radiology report, the quality of which is largely dependent on the radiologist, there is a need for a comprehensive system for both medical imaging and reporting. Imaging and radiology reporting are combined. Image acquisition, reading of the images, and reporting are linked, allowing feedback of readings to control acquisition so that the final reporting is more comprehensive. Clinical findings typically associated with reporting may be used automatically to feedback for further or continuing acquisition without requiring a radiologist. A clinical identification may be used to determine what image processing to perform for reading, and/or raw (i.e., non-reconstructed) scan data from the imaging system are provided for integrated image processing with report generation.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: July 26, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Puneet Sharma, Dorin Comaniciu
  • Patent number: 11380084
    Abstract: Systems and methods for image classification include receiving imaging data of in-vivo or excised tissue of a patient during a surgical procedure. Local image features are extracted from the imaging data. A vocabulary histogram for the imaging data is computed based on the extracted local image features. A classification of the in-vivo or excised tissue of the patient in the imaging data is determined based on the vocabulary histogram using a trained classifier, which is trained based on a set of sample images with confirmed tissue types.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: July 5, 2022
    Inventors: Ali Kamen, Shanhui Sun, Terrence Chen, Tommaso Mansi, Alexander Michael Gigler, Patra Charalampaki, Maximilian Fleischer, Dorin Comaniciu
  • Publication number: 20220199254
    Abstract: Systems and methods for automatically determining an assessment of a patient are provided. A patient is automatically interacted with, by a first trained machine learning based model, to acquire initial patient data. One or more risk factors associated with the patient are automatically determined, by a second trained machine learning based model, based on the received initial patient data. The patient is automatically interacted with, by the first trained machine learning based model, to acquire additional patient data based on the one or more determined risk factors. An assessment of the patient is automatically determined, by the second trained machine learning based model, based on the initial patient data and the additional patient data. The assessment of the patient is output.
    Type: Application
    Filed: December 18, 2020
    Publication date: June 23, 2022
    Inventors: Ahmet Tuysuzoglu, Dorin Comaniciu, Tommaso Mansi
  • Patent number: 11342080
    Abstract: A method and system for automated disease progression modeling and therapy optimization for an individual patient is disclosed. A current condition of the patient is modeled using a state-variable model in which a plurality of state variables in a state vector represent a plurality of characteristics of the patient. Disease progression for the patient is predicted based on the state variables of the patient. An optimization is performed to determine an optimal therapy type and an optimal therapy timing for the patient based on the predicted disease progression for the patient.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: May 24, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Puneet Sharma, Dorin Comaniciu