Patents by Inventor Dorin Comaniciu

Dorin Comaniciu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11334791
    Abstract: A trained recurrent neural network having a set of control policies learned from application of a template dataset and one or more corresponding template deep network architectures may generate a deep network architecture for performing a task on an application dataset. The template deep network architectures may have an established level or performance in executing the task. A deep network based on the deep network architecture may trained to perform the task on the application dataset. The control policies of the recurrent neural network may be updated based on the performance of the trained deep network.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: May 17, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Vivek Kumar Singh, Terrence Chen, Dorin Comaniciu
  • Patent number: 11304665
    Abstract: Methods for computing hemodynamic quantities include: (a) acquiring angiography data from a patient; (b) calculating a flow and/or calculating a change in pressure in a blood vessel of the patient based on the angiography data; and (c) computing the hemodynamic quantity based on the flow and/or the change in pressure. Systems for computing hemodynamic quantities and computer readable storage media are described.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: April 19, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Puneet Sharma, Saikiran Rapaka, Xudong Zheng, Ali Kamen, Lucian Mihai Itu, Bogdan Georgescu, Dorin Comaniciu, Thomas Redel, Jan Boese, Viorel Mihalef
  • Patent number: 11308611
    Abstract: Systems and methods for reducing false positive detections of malignant lesions are provided. A candidate malignant lesion is detected in one or more medical images, such as, e.g., multi-parametric magnetic resonance images. One or more patches associated with the candidate malignant lesion are extracted from the one or more medical images. The candidate malignant lesion is classified as being a true positive detection of a malignant lesion or a false positive detection of the malignant lesion based on the one or more extract patches using a trained machine learning network. The results of the classification are output.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: April 19, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Xin Yu, Bin Lou, Bibo Shi, David Jean Winkel, Ali Kamen, Dorin Comaniciu
  • Publication number: 20220101987
    Abstract: A scheduling system includes: a plurality of input devices configured to output medical data, a workforce storage, configured to store working characteristics of a plurality of doctors, and a scheduler configured to receive as input data related to the medical data and the working characteristics, and configured to provide as output a plurality of schedules for the plurality of doctors for analysing the medical data.
    Type: Application
    Filed: September 1, 2021
    Publication date: March 31, 2022
    Inventors: Ahmet Tuysuzoglu, Eli Gibson, Dorin Comaniciu
  • Publication number: 20220079552
    Abstract: For cardiac flow detection in echocardiography, by detecting one or more valves, sampling planes or flow regions spaced from the valve and/or based on multiple valves are identified. A confidence of the detection may be used to indicate confidence of calculated quantities and/or to place the sampling planes.
    Type: Application
    Filed: November 22, 2021
    Publication date: March 17, 2022
    Inventors: Huseyin Tek, Bogdan Georgescu, Tommaso Mansi, Frank Sauer, Dorin Comaniciu, Helene C. Houle, Ingmar Voigt
  • Patent number: 11275976
    Abstract: Medical images may be classified by receiving a first medical image. The medical image may be applied to a machine learned classifier. The machine learned classifier may be trained on second medical images. A label of the medical image and a measure of uncertainty may be generated. The measure of uncertainty may be compared to a threshold. The first medical image and the label may be output when the measure of uncertainty is within the threshold.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: March 15, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Florin-Cristian Ghesu, Eli Gibson, Bogdan Georgescu, Sasa Grbic, Dorin Comaniciu
  • Patent number: 11244453
    Abstract: Systems and method are described for determining a malignancy of a nodule. A medical image of a nodule of a patient is received. A patch surrounding the nodule is identified in the medical image. A malignancy of the nodule in the patch is predicted using a trained deep image-to-image network.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: February 8, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Sasa Grbic, Dorin Comaniciu, Bogdan Georgescu, Siqi Liu, Razvan Ionasec
  • Publication number: 20220028063
    Abstract: For machine learning for abnormality assessment in medical imaging and application of a machine-learned model, the machine learning uses regularization of the loss, such as regularization being used for training for abnormality classification in chest radiographs. The regularization may be a noise and/or correlation regularization directed to the noisy ground truth labels of the training data. The resulting machine-learned model may better classify abnormalities in medical images due to the use of the noise and/or correlation regularization in the training.
    Type: Application
    Filed: October 16, 2020
    Publication date: January 27, 2022
    Inventors: Sebastian Guendel, Arnaud Arindra Adiyoso, Florin-Cristian Ghesu, Sasa Grbic, Bogdan Georgescu, Dorin Comaniciu
  • Publication number: 20220022818
    Abstract: Systems and methods for assessing a disease are provided. An input medical image in a first modality is received. Lungs are segmented from the input medical image using a trained lung segmentation network and abnormality patterns associated with the disease are segmented from the input medical image using a trained abnormality pattern segmentation network. The trained lung segmentation network and the trained abnormality pattern segmentation network are trained based on 1) synthesized images in the first modality generated from training images in a second modality and 2) target segmentation masks for the synthesized images generated from training segmentation masks for the training images. An assessment of the disease is determined based on the segmented lungs and the segmented abnormality patterns.
    Type: Application
    Filed: July 21, 2020
    Publication date: January 27, 2022
    Inventors: Florin-Cristian Ghesu, Siqi Liu, Awais Mansoor, Sasa Grbic, Sebastian Vogt, Dorin Comaniciu, Ruhan Sa, Zhoubing Xu
  • Patent number: 11229377
    Abstract: A method of visualizing spinal nerves includes receiving a 3D image volume depicting a spinal cord and a plurality of spinal nerves. For each spinal nerve, a 2D spinal nerve image is generated by defining a surface within the 3D volume comprising the spinal nerve. The surface is curved such that it passes through the spinal cord while encompassing the spinal nerve. Then, the 2D spinal nerve images are generated based on voxels on the surface included in the 3D volume. A visualization of the 2D spinal images is presented in a graphical user interface that allows each 2D spinal image to be viewed simultaneously.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: January 25, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Atilla Peter Kiraly, David Liu, Shaohua Kevin Zhou, Dorin Comaniciu, Gunnar Krüger
  • Publication number: 20210407674
    Abstract: Similar pre-stored medical datasets are identified by comparison with a current case dataset. A current case dataset is provided and includes radiological data of a patient. A number of pre-stored medical datasets each including radiological data of other patients are provided. Each case dataset is evaluated according to a predefined AI-based method to obtain a number of definitive features for that case dataset. The definitive features of the current case dataset are compared with the definitive features of each pre-stored medical dataset to identify a number of pre-stored medical datasets most similar to the current case dataset. The identified number of most similar pre-stored medical datasets are output.
    Type: Application
    Filed: March 11, 2021
    Publication date: December 30, 2021
    Inventors: David Jean Winkel, Bin Lou, Dorin Comaniciu, Ali Kamen
  • Publication number: 20210398654
    Abstract: Systems and methods for automatically detecting a disease in medical images are provided. Input medical images are received. A plurality of metrics for a disease is computed for each of the input medical images. The input medical images are clustered into a plurality of clusters based on one or more of the plurality of metrics to classify the input medical images. The plurality of clusters comprise a cluster of one or more of the input medical images associated with the disease and one or more clusters of one or more of the input medical images not associated with the disease. In one embodiment, the disease is COVID-19 (coronavirus disease 2019).
    Type: Application
    Filed: June 22, 2020
    Publication date: December 23, 2021
    Inventors: Shikha Chaganti, Sasa Grbic, Bogdan Georgescu, Guillaume Chabin, Thomas Re, Youngjin Yoo, Thomas Flohr, Valentin Ziebandt, Dorin Comaniciu
  • Patent number: 11185231
    Abstract: Intelligent multi-scale image parsing determines the optimal size of each observation by an artificial agent at a given point in time while searching for the anatomical landmark. The artificial agent begins searching image data with a coarse field-of-view and iteratively decreases the field-of-view to locate the anatomical landmark. After searching at a coarse field-of view, the artificial agent increases resolution to a finer field-of-view to analyze context and appearance factors to converge on the anatomical landmark. The artificial agent determines applicable context and appearance factors at each effective scale.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: November 30, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Bogdan Georgescu, Florin Cristian Ghesu, Yefeng Zheng, Dominik Neumann, Tommaso Mansi, Dorin Comaniciu, Wen Liu, Shaohua Kevin Zhou
  • Publication number: 20210330269
    Abstract: Systems and methods for predicting risk for a medical event associated with evaluating or treating a patient for a disease are provided. Input medical imaging data and patient data of a patient are received. The input medical imaging data includes abnormality patterns associated with a disease. Imaging features are extracted from the input medical imaging data using a trained machine learning based feature extraction network. One or more of the extracted imaging features are normalized. The one or more normalized extracted imaging features and the patient data are encoded into features using a trained machine learning based encoder network. Risk for a medical event associated with evaluating or treating the patient for the disease is predicted based on the encoded features.
    Type: Application
    Filed: June 3, 2020
    Publication date: October 28, 2021
    Inventors: Puneet Sharma, Ingo Schmuecking, Sasa Grbic, Dorin Comaniciu
  • Publication number: 20210327054
    Abstract: Systems and methods for generating a synthesized medical image are provided. An input medical image is received. A synthesized segmentation mask is generated. The input medical image is masked based on the synthesized segmentation mask. The masked input medical image has an unmasked portion and a masked portion. An initial synthesized medical image is generated using a trained machine learning based generator network. The initial synthesized medical image includes a synthesized version of the unmasked portion of the masked input medical image and synthesized patterns in the masked portion of the masked input medical image. The synthesized patterns is fused with the input medical image to generate a final synthesized medical image.
    Type: Application
    Filed: May 1, 2020
    Publication date: October 21, 2021
    Inventors: Siqi Liu, Bogdan Georgescu, Zhoubing Xu, Youngjin Yoo, Guillaume Chabin, Shikha Chaganti, Sasa Grbic, Sebastien Piat, Brian Teixeira, Thomas Re, Dorin Comaniciu
  • Publication number: 20210304408
    Abstract: Systems and methods for assessing a disease are provided. Medical imaging data of lungs of a patient is received. The lungs are segmented from the medical imaging data and abnormality regions associated with a disease are segmented from the medical imaging data. An assessment of the disease is determined based on the segmented lungs and the segmented abnormality regions. The disease may be COVID-19 (coronavirus disease 2019) or diseases, such as, e.g., SARS (severe acute respiratory syndrome), MERS (Middle East respiratory syndrome), or other types of viral and non-viral pneumonia.
    Type: Application
    Filed: April 1, 2020
    Publication date: September 30, 2021
    Inventors: Shikha Chaganti, Sasa Grbic, Bogdan Georgescu, Zhoubing Xu, Siqi Liu, Youngjin Yoo, Thomas Re, Guillaume Chabin, Thomas Flohr, Valentin Ziebandt, Dorin Comaniciu, Brian Teixeira, Sebastien Piat
  • Publication number: 20210287799
    Abstract: A method is for generating modified medical images. An embodiment of the method includes receiving a first medical image displaying an abnormal structure within a patient, and applying a trained inpainting function to the first medical image to generate a modified first medical image, the trained inpainting function being trained to inpaint abnormal structures within a medical image. The method includes determining an abnormality patch based on the first medical image and the modified first medical image; receiving a second medical image of the same type as the first medical image; and including the abnormality patch into the second medical image to generate a modified second medical image. A method is for detecting abnormal structures using a trained detection function trained based on modified second medical images. Systems, computer programs and computer-readable media related to those methods are also disclosed.
    Type: Application
    Filed: March 4, 2021
    Publication date: September 16, 2021
    Applicant: Siemens Healthcare GmbH
    Inventors: Sebastian GUENDEL, Arnaud Arindra ADIYOSO, Sasa GRBIC, Dorin COMANICIU
  • Publication number: 20210248736
    Abstract: Systems and methods are provided for classifying an abnormality in a medical image. An input medical image depicting a lesion is received. The lesion is localized in the input medical image using a trained localization network to generate a localization map. The lesion is classified based on the input medical image and the localization map using a trained classification network. The classification of the lesion is output. The trained localization network and the trained classification network are jointly trained.
    Type: Application
    Filed: June 13, 2019
    Publication date: August 12, 2021
    Inventors: Ali Kamen, Ahmet Tuysuzoglu, Bin Lou, Bibo Shi, Nicolas Von Roden, Kareem Abdelrahman, Berthold Kiefer, Robert Grimm, Heinrich von Busch, Mamadou Diallo, Tongbai Meng, Dorin Comaniciu, David Jean Winkel, Xin Yu
  • Patent number: 11074688
    Abstract: For processing a medical image, medical image data representing a medical image of at least a portion of a vertebral column is received. The medical image data is processed to determine a plurality of positions within the image. Each of the plurality of positions corresponds to a position relating to a vertebral bone within the vertebral column. Data representing the plurality of positions is processed to determine a degree of deformity of at least one vertebral bone within the vertebral column.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: July 27, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Guillaume Chabin, Jonathan Sperl, Rainer Kärgel, Sasa Grbic, Razvan Ionasec, Dorin Comaniciu
  • Publication number: 20210219935
    Abstract: In hemodynamic determination in medical imaging, the classifier is trained from synthetic data rather than relying on training data from other patients. A computer model (in silico) may be perturbed in many different ways to generate many different examples. The flow is calculated for each resulting example. A bench model (in vitro) may similarly be altered in many different ways. The flow is measured for each resulting example. The machine-learnt classifier uses features from medical scan data for a particular patient to estimate the blood flow based on mapping of features to flow learned from the synthetic data. Perturbations or alterations may account for therapy so that the machine-trained classifier may estimate the results of therapeutically altering a patient-specific input feature. Uncertainty may be handled by training the classifier to predict a distribution of possibilities given uncertain input distribution.
    Type: Application
    Filed: March 9, 2021
    Publication date: July 22, 2021
    Inventors: Lucian Mihai Itu, Tiziano Passerini, Saikiran Rapaka, Puneet Sharma, Chris Schwemmer, Max Schoebinger, Thomas Redel, Dorin Comaniciu