Patents by Inventor Douglas Albagli

Douglas Albagli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210308628
    Abstract: Porous membranes are provided according to the invention having desirable coefficient of thermal expansion and large surface area, for example at least about 4,000 mm2. These porous membranes may be made according to an exemplary process employing lithographic patterning of a photoresist followed by development of the photoresist and etching. In one aspect, the etch barrier layer is chosen from a material that does not react with or incorporate metal or other contaminants into the membrane layer.
    Type: Application
    Filed: April 7, 2020
    Publication date: October 7, 2021
    Inventors: William A HENNESSY, Douglas ALBAGLI
  • Patent number: 11099280
    Abstract: Methods and systems are provided for imaging assemblies including different layers. The layers include a planar layer positioned on imaging components. A scintillator layer is positioned above the planar layer and a sealing layer is positioned above the scintillator layer.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: August 24, 2021
    Assignee: GE Precision Healthcare LLC
    Inventors: Marc Schaepkens, William Andrew Hennessy, Douglas Albagli, Ahmet Gun Erlat
  • Publication number: 20210208292
    Abstract: Methods and systems are provided for imaging assemblies including different layers. The layers include a planar layer positioned on imaging components. A scintillator layer is positioned above the planar layer and a sealing layer is positioned above the scintillator layer.
    Type: Application
    Filed: January 3, 2020
    Publication date: July 8, 2021
    Inventors: Marc Schaepkens, William Andrew Hennessy, Douglas Albagli, Ahmet Gun Erlat
  • Publication number: 20210204889
    Abstract: The present disclosure relates to the use of X-ray detector cassettes that may be abutted or overlapped to form a detector assembly suitable for imaging objects that are too large to image using a single X-ray detector cassette. Such a detector assembly may be customized in terms of the size and/or shape of the field-of-view (FOV). In certain embodiments the radiation-sensitive electronics (e.g., readout electronics) are positioned to the side of the X-ray detecting components (e.g., scintillator, TFT array, and so forth), allowing the cassette to be thin relative to other detector devices and allowing the electronics to remain outside the X-ray beam path.
    Type: Application
    Filed: January 7, 2020
    Publication date: July 8, 2021
    Inventors: Biju Jacob, Douglas Albagli, William Robert Ross, William Andrew Hennessy, Eric Patrick Davis, Bruno Kristiaan Bernard De Man, Nicholas Ryan Konkle
  • Publication number: 20210030386
    Abstract: A digital X-ray detector is provided. The digital X-ray detector includes control circuitry. The control circuitry is configured to obtain an electromagnetic interference (EMI) frequency of an EMI signal, to receive a signal to start a scan, to ensure EMI noise is in a same phase during acquisition of offset images and read images to enable a subtraction of the EMI noise, and to start the scan.
    Type: Application
    Filed: October 16, 2020
    Publication date: February 4, 2021
    Inventors: Mahesh Raman Narayanaswamy, Catherine Noel Bailey, Joseph John Kulak, Jeffrey Alan Kautzer, Douglas Albagli, Jeffrey Lange
  • Patent number: 10828003
    Abstract: A digital X-ray detector is provided. The digital X-ray detector includes control circuitry. The control circuitry is configured to obtain an electromagnetic interference (EMI) frequency of an EMI signal, to receive a signal to start a scan, to ensure EMI noise is in a same phase during acquisition of offset images and read images to enable a subtraction of the EMI noise, and to start the scan.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: November 10, 2020
    Assignee: GE Precision Healthcare, LLC
    Inventors: Mahesh Raman Narayanaswamy, Catherine Noel Bailey, Joseph John Kulak, Jeffrey Alan Kautzer, Douglas Albagli, Jeffrey Lange
  • Patent number: 10823858
    Abstract: An imager panel for an x-ray detector for obtaining x-ray images of an object is provided that includes a first portion disposed at the center of the hybrid imager panel that can produce images of a first resolution and a second portion disposed at least partially around the first portion that is capable of producing images of a second resolution. The hybrid imager panel provides a hybrid detector that can be selectively operated to obtain images of varying resolutions corresponding to the first resolution from the first portion, the second resolution from the second portion or a combination thereof.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: November 3, 2020
    Assignee: General Electric Company
    Inventors: James Liu, Nicholas Konkle, Biju Jacob, Douglas Albagli, William Hennessy, Habib Vafi
  • Patent number: 10794758
    Abstract: A system for verifying the integrity of a radiation detector is provided. the system includes one or more data modules, one or more data lines, and a controller. The one or more data lines electronically connect one or more detector elements of the radiation detector to the one or more data modules. Each of the detector elements is operative to detect electromagnetic radiation. The controller is operative to induce a voltage in the one or more detector elements, obtain a reading from the one or more detector elements via the one or more data modules; and determine whether the integrity of the radiation detector has been compromised based at least in part on comparing the reading to a benchmark.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: October 6, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Douglas Albagli, Nicholas Konkle, Joseph Kulak
  • Publication number: 20200297302
    Abstract: A digital X-ray detector is provided. The digital X-ray detector includes control circuitry. The control circuitry is configured to obtain an electromagnetic interference (EMI) frequency of an EMI signal, to receive a signal to start a scan, to ensure EMI noise is in a same phase during acquisition of offset images and read images to enable a subtraction of the EMI noise, and to start the scan.
    Type: Application
    Filed: March 18, 2019
    Publication date: September 24, 2020
    Inventors: Mahesh Raman Narayanaswamy, Catherine Noel Bailey, Joseph John Kulak, Jeffrey Alan Kautzer, Douglas Albagli, Jeffrey Lange
  • Patent number: 10732131
    Abstract: Aspects of the present disclosure relate to the fabrication and use of a curved X-ray detector panel, suitable for use in imaging pipes or other curved objects to which the curved detector may be fitted. In certain embodiments, the curved detector panel is fabricated using a thin, flexible substrate that is unbreakable or resistant to breaking.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: August 4, 2020
    Assignee: General Electric Company
    Inventors: Andrea Marie Schmitz, Aaron Judy Couture, Douglas Albagli, Shana Marie Telesz, Fulton Jose Lopez
  • Patent number: 10631801
    Abstract: An x-ray detector comprises: a housing, including a cover fastened on a flange of a flanged base and forming a semi-hermetic seal therebetween, the flanged base including a bottom surface and the flange surrounding a perimeter of the bottom surface; and an x-ray imager positioned on the bottom surface, the x-ray imager including a wireless transmitter, wherein the seal semi-hermetically encloses the x-ray imager in the housing, and is positioned nonadjacently to surfaces in contact with the x-ray imager. In this way, a simpler and less costly seal for a digital x-ray panel can be provide; furthermore, the seal is reusable and resealable, facilitating repair and refurbishment of the device.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: April 28, 2020
    Assignee: General Electric Company
    Inventors: Biju Jacob, Nicholas Konkle, Douglas Albagli, William Andrew Hennessy
  • Publication number: 20190357865
    Abstract: A digital X-ray detector is provided. The detector includes a detector array configured to generate image data based on incident X-ray radiation. The detector also includes a housing in which the detector array is disposed. The detector further includes an indicator disposed adjacent a corner of the housing, wherein the indicator includes at least one light source and is configured to provide a user perceptible signal indicating a status of the digital X-ray detector.
    Type: Application
    Filed: May 25, 2018
    Publication date: November 28, 2019
    Inventors: Nicholas Ryan Konkle, Patrick Jeffrey Harrington, Catherine Noel Bailey, Daniel Robert Lochner, Kevin Edward Kinsey, William Andrew Hennessy, Joseph Kulak, Douglas Albagli
  • Publication number: 20190353805
    Abstract: A digital X-ray detector is provided. The digital X-ray detector includes a polymeric substrate. The digital X-ray detector also include a detector array configured to generate image data based on incident X-ray radiation disposed on the polymeric substrate, wherein the polymeric substrate extends beyond an edge of the detector array. The digital X-ray detector further includes scan electronics and readout electronics configured to acquire image data from the detector array, wherein the scan electronics, the readout electronics, or both the scan electronics and the readout electronics are directly disposed on the polymeric substrate.
    Type: Application
    Filed: May 21, 2018
    Publication date: November 21, 2019
    Inventors: Nicholas Ryan Konkle, Daniel Robert Lochner, Douglas Albagli, Joseph John Kulak, William Andrew Hennessy, Habib Vafi
  • Publication number: 20190235097
    Abstract: An imager panel for an x-ray detector for obtaining x-ray images of an object is provided that includes a first portion disposed at the center of the hybrid imager panel that can produce images of a first resolution and a second portion disposed at least partially around the first portion that is capable of producing images of a second resolution. The hybrid imager panel provides a hybrid detector that can be selectively operated to obtain images of varying resolutions corresponding to the first resolution from the first portion, the second resolution from the second portion or a combination thereof.
    Type: Application
    Filed: January 26, 2018
    Publication date: August 1, 2019
    Inventors: James Liu, Nicholas Konkle, Biju Jacob, Douglas Albagli, William Hennessy, Habib Vafi
  • Patent number: 10299744
    Abstract: An x-ray detector comprises: a housing, including a cover removably fastened on a flange of a flanged base and forming a semi-hermetic seal therebetween, the flanged base including a bottom surface and the flange surrounding a perimeter of the bottom surface; and an x-ray imager positioned on the bottom surface, the x-ray imager including a scintillator and an image sensor, wherein the seal semi-hermetically encloses the x-ray imager in the housing, and is positioned nonadjacently to surfaces in contact with the x-ray imager. In this way, a simpler and less costly seal for a digital x-ray panel can be provide; furthermore, the seal is reusable and resealable, facilitating repair and refurbishment of the device.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: May 28, 2019
    Assignees: GENERAL ELECTRIC COMPANY, TELEDYNE DIGITAL IMAGING, INC., TELEDYNE DALSA B.V.
    Inventors: Biju Jacob, Brian David Yanoff, William Andrew Hennessy, Jeffery Jon Shaw, Douglas Albagli, Bartholomeus G. M. H. Dillen, Inge Peters, Anton Van Arendonk
  • Publication number: 20190101439
    Abstract: A system for verifying the integrity of a radiation detector is provided. the system includes one or more data modules, one or more data lines, and a controller. The one or more data lines electronically connect one or more detector elements of the radiation detector to the one or more data modules. Each of the detector elements is operative to detect electromagnetic radiation. The controller is operative to induce a voltage in the one or more detector elements, obtain a reading from the one or more detector elements via the one or more data modules; and determine whether the integrity of the radiation detector has been compromised based at least in part on comparing the reading to a benchmark.
    Type: Application
    Filed: September 29, 2017
    Publication date: April 4, 2019
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: DOUGLAS ALBAGLI, NICHOLAS KONKLE, JOSEPH KULAK
  • Patent number: 10192646
    Abstract: A radiation shielding system for an x-ray digital detector array includes a first radiation shield having a plurality of shielding pads and a plurality of interstices between the plurality of shielding pads, the plurality of shielding pads having a greater thickness than the thickness of the plurality of interstices. The plurality of shielding pads is configured to be positioned over active components of the x-ray digital detector array and the interstices are configured to be positioned over passive components of the x-ray digital detector array.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: January 29, 2019
    Assignee: General Electric Company
    Inventors: Susanne Madeline Lee, Douglas Albagli, James Michael Gent, Kevin Edward Kinsey
  • Publication number: 20180203136
    Abstract: An imaging detector, an imaging system having the imaging detector, and a method for manufacturing the imaging detector are disclosed. The imaging detector includes a substrate, a plurality of thin film transistors (TFTs) disposed on the substrate, a data line disposed on the substrate electrically coupled to at least two TFTs of the plurality of TFTs, a pixelated bottom electrode disposed on the substrate and laterally offset from the data line, a continuous organic photodiode layer, and a continuous top electrode layer overlaid on the continuous organic photodiode layer. The continuous organic photodiode layer is at least partially overlaid on the plurality of TFTs, the data line, and the pixelated bottom electrode and includes a first portion overlaid on the data line and a second portion overlaid on the pixelated bottom electrode. First portion is thicker than the second portion.
    Type: Application
    Filed: January 13, 2017
    Publication date: July 19, 2018
    Inventors: Jie Jerry Liu, Kwang Hyup An, Douglas Albagli
  • Publication number: 20180132805
    Abstract: An x-ray detector comprises: a housing, including a cover fastened on a flange of a flanged base and forming a semi-hermetic seal therebetween, the flanged base including a bottom surface and the flange surrounding a perimeter of the bottom surface; and an x-ray imager positioned on the bottom surface, the x-ray imager including a wireless transmitter, wherein the seal semi-hermetically encloses the x-ray imager in the housing, and is positioned nonadjacently to surfaces in contact with the x-ray imager. In this way, a simpler and less costly seal for a digital x-ray panel can be provide; furthermore, the seal is reusable and resealable, facilitating repair and refurbishment of the device.
    Type: Application
    Filed: November 17, 2016
    Publication date: May 17, 2018
    Inventors: Biju Jacob, Nicholas Konkle, Douglas Albagli, William Andrew Hennessy
  • Publication number: 20180132804
    Abstract: An x-ray detector comprises: a housing, including a cover removably fastened on a flange of a flanged base and forming a semi-hermetic seal therebetween, the flanged base including a bottom surface and the flange surrounding a perimeter of the bottom surface; and an x-ray imager positioned on the bottom surface, the x-ray imager including a scintillator and an image sensor, wherein the seal semi-hermetically encloses the x-ray imager in the housing, and is positioned nonadjacently to surfaces in contact with the x-ray imager. In this way, a simpler and less costly seal for a digital x-ray panel can be provide; furthermore, the seal is reusable and resealable, facilitating repair and refurbishment of the device.
    Type: Application
    Filed: November 17, 2016
    Publication date: May 17, 2018
    Inventors: Biju Jacob, Brian David Yanoff, William Andrew Hennessy, Jeffery Jon Shaw, Douglas Albagli, Bartholomeus G.M.H. Dillen, Inge Peters, Anton Van Arendonk