Patents by Inventor Edward J. Nowak

Edward J. Nowak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170178970
    Abstract: The method includes prior to depositing a gate on a first vertical FET on a semiconductor substrate, depositing a first layer on the first vertical FET on the semiconductor substrate. The method further includes prior to depositing a gate on a second vertical FET on the semiconductor substrate, depositing a second layer on the second vertical FET on the semiconductor substrate. The method further includes etching the first layer on the first vertical FET to a lower height than the second layer on the second vertical FET. The method further includes depositing a gate material on both the first vertical FET and the second vertical FET. The method further includes etching the gate material on both the first vertical FET and the second vertical FET to a co-planar height.
    Type: Application
    Filed: December 16, 2015
    Publication date: June 22, 2017
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Publication number: 20170178965
    Abstract: One embodiment provides a method of integrating a planar field-effect transistor (FET) with a vertical FET. The method comprises masking and etching a semiconductor of the vertical FET to form a fin, and providing additional masking, additional etching, doping and depositions to isolate a bottom source/drain (S/D) region. A dielectric is formed on the bottom S/D region to form a spacer. The method further comprises depositing gate metals, etching a vertical gate for the vertical FET and a planar gate for the planar FET using a shared gate mask, depositing dielectric, etching the dielectric to expose one or more portions of the fin, growing epitaxy on a top S/D region, masking and etching S/D contact openings for the bottom S/D region, forming silicide regions in S/D regions, depositing contact metal in the silicide regions to form contacts, and planarizing the contacts.
    Type: Application
    Filed: October 7, 2016
    Publication date: June 22, 2017
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Publication number: 20170179302
    Abstract: Vertical field effect transistors (FETs) with minimum pitch and methods of manufacture are disclosed. The structure includes at least one vertical fin structure and gate material contacting with the at least one vertical fin structure. The structure further includes metal material in electrical contact with the ends of the at least one vertical fin.
    Type: Application
    Filed: March 8, 2017
    Publication date: June 22, 2017
    Inventors: Brent A. ANDERSON, Edward J. NOWAK
  • Publication number: 20170179116
    Abstract: One embodiment provides a method of integrating a planar field-effect transistor (FET) with a vertical FET. The method comprises masking and etching a semiconductor of the vertical FET to form a fin, and providing additional masking, additional etching, doping and depositions to isolate a bottom source/drain (S/D) region. A dielectric is formed on the bottom S/D region to form a spacer. The method further comprises depositing gate metals, etching a vertical gate for the vertical FET and a planar gate for the planar FET using a shared gate mask, depositing dielectric, etching the dielectric to expose one or more portions of the fin, growing epitaxy on a top S/D region, masking and etching S/D contact openings for the bottom S/D region, forming silicide regions in S/D regions, depositing contact metal in the silicide regions to form contacts, and planarizing the contacts.
    Type: Application
    Filed: July 15, 2016
    Publication date: June 22, 2017
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Publication number: 20170170196
    Abstract: The present invention relates generally to integrated circuits and more particularly, to a structure and method of forming a hybrid circuit including a tunnel field-effect transistor (TFET) and a conventional field effect transistor (FET). Embodiments of the present invention include a hybrid amplifier which features a TFET common-source feeding a common-gate conventional FET (e.g. a MOSFET). A TFET gate may be electrically isolated from an output from a conventional FET. Thus, a high impedance input may be received by a TFET with a high-isolation output (i.e. low capacitance) at a conventional FET. A hybrid circuit amplifier including a TFET and a conventional FET may have a very high input impedance and a low miller capacitance.
    Type: Application
    Filed: April 6, 2016
    Publication date: June 15, 2017
    Inventors: Brent A. Anderson, Tamilmani Ethirajan, Edward J. Nowak
  • Publication number: 20170170323
    Abstract: One embodiment provides a method comprising etching a fin of a fin-shaped field effect transistor (FinFET) to form a reduced fin, and laterally etching the reduced fin to form a fin channel including a first fin channel sidewall and a second fin channel sidewall opposing the first fin channel sidewall. The method further comprises forming a first thin dielectric tunnel and a second thin dielectric tunnel on the first fin channel sidewall and the second fin channel sidewall, respectively. Each thin dielectric tunnel prevents lateral epitaxial crystal growth on the fin channel. The method further comprises etching an insulator layer disposed between the fin channel and a substrate of the FinFET to expose portions of a substrate surface of the substrate. A source epitaxy and a drain epitaxy are formed from vertical epitaxial crystal growth on the exposed portions of the substrate surface after epitaxial deposition.
    Type: Application
    Filed: October 27, 2016
    Publication date: June 15, 2017
    Inventors: Kangguo Cheng, Ramachandra Divakaruni, Johnathan E. Faltermeier, Edward J. Nowak, Kern Rim
  • Patent number: 9680473
    Abstract: Logic circuits, or logic gates, are disclosed comprising vertical transport field effect transistors and one or more active gates, wherein the number of CPP's for the logic circuit, in isolation, is equal to the number of active gates. The components of the logic circuit can be present in at least three different vertical circuit levels, including a circuit level comprising at least one horizontal plane passing through a conductive element that provides an input voltage to the one or more gate structures and another conductive element that provides an output voltage of the logic circuit, and another circuit level that comprises a horizontal plane passing through a conductive bridge from the N output to P output of the field effect transistors. Such logic circuits can include single-gate inverters, two-gate inverters, NOR2 logic gates, and NAND3 logic gates, among other more complicated logic circuits.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: June 13, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brent A. Anderson, Albert M. Chu, Edward J. Nowak
  • Patent number: 9673055
    Abstract: A method of single-fin removal for quadruple density fins. A first double density pattern of first sidewall spacers is produced on a semiconductor substrate from first mandrels formed by a first mask using a minimum pitch. A second double density pattern of second sidewall spacers is produced on a layer disposed above the first double density pattern from second mandrels formed by a second mask with a the minimum pitch that is shifted relative to the first mask. A single sidewall spacer is removed from either the first or second double density pattern of first and second sidewall spacers. Sidewall image transfer processes allow the formation of quadruple density fins from which but a single fin is removed.
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: June 6, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Brent A. Anderson, Andres Bryant, Edward J. Nowak
  • Patent number: 9659941
    Abstract: Embodiments of the present disclosure provide an integrated circuit (IC) structure and methods of electrically connecting multiple IC structures. An IC structure according to embodiments of the present disclosure can include: a first conductive region; a second conductive region laterally separated from the first conductive region; a first vertically-oriented semiconductor fin formed over and contacting the first conductive region; a second vertically-oriented semiconductor fin formed over and contacting the second conductive region; and a first gate contacting each of the first vertically-oriented semiconductor fin and the second conductive region, wherein the first gate includes: a substantially horizontal section contacting the first vertically-oriented semiconductor fin, and a substantially vertical section contacting the second conductive region.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: May 23, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Patent number: 9653360
    Abstract: Vertical field effect transistors (FETs) with minimum pitch and methods of manufacture are disclosed. The structure includes at least one vertical fin structure and gate material contacting with the at least one vertical fin structure. The structure further includes metal material in electrical contact with the ends of the at least one vertical fin.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: May 16, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Publication number: 20170098585
    Abstract: A source/drain epitaxial electrical monitor and methods of characterizing epitaxial growth through capacitance measurements are provided. The structure includes a plurality of fin structures; one or more gate structures, perpendicular to and intersecting the plurality of fin structures. The structure further includes a first connection by a first contact at one fin-end of every other fin structure of the plurality of fin structures, and a second connection by a second contact at one end of an alternate fin structure of the plurality of fin structures.
    Type: Application
    Filed: October 2, 2015
    Publication date: April 6, 2017
    Inventors: Edward J. NOWAK, Robert R. ROBISON, Lyndon R. LOGAN
  • Patent number: 9613955
    Abstract: The present invention relates generally to integrated circuits and more particularly, to a structure and method of forming a hybrid circuit including a tunnel field-effect transistor (TFET) and a conventional field effect transistor (FET). Embodiments of the present invention include a hybrid amplifier which features a TFET common-source feeding a common-gate conventional FET (e.g. a MOSFET). A TFET gate may be electrically isolated from an output from a conventional FET. Thus, a high impedance input may be received by a TFET with a high-isolation output (i.e. low capacitance) at a conventional FET. A hybrid circuit amplifier including a TFET and a conventional FET may have a very high input impedance and a low miller capacitance.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: April 4, 2017
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Tamilmani Ethirajan, Edward J. Nowak
  • Patent number: 9613861
    Abstract: Damascene wires with top via structures and methods of manufacture are provided. The semiconductor structure includes a damascene wiring structure with an integrally formed top via structure in self-alignment with the damascene wiring structure which is underneath the integrally formed top via structure.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: April 4, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Patent number: 9613867
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a symmetric tunnel field effect transistor and methods of manufacture. The structure includes a gate structure including a source region and a drain region both of which comprise a doped VO2 region.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: April 4, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mohit Bajaj, Suresh Gundapaneni, Aniruddha Konar, Narasimha R. Mavilla, Kota V. R. M. Murali, Edward J. Nowak
  • Publication number: 20170062609
    Abstract: Devices and methods for a high voltage FinFET with a shaped drift region include a lateral diffusion metal oxide semiconductor (LDMOS) FinFET having a substrate with a top surface and a fin attached to the top surface. The fin includes a source region having a first type of doping, an undoped gate-control region adjacent the source region, a drift region adjacent the undoped gate-control region opposite the source region, and a drain region. The amount of doping of the source region is greater than the amount of doping in the drift region. The drain region is adjacent to the drift region and has the same type of doping. The fin is tapered in the drift region, being wider closest to the undoped gate-control region and thinner closest to the drain region. A gate stack is attached to the top surface of the substrate and located with the undoped gate-control region.
    Type: Application
    Filed: November 15, 2016
    Publication date: March 2, 2017
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Lyndon R. Logan, Edward J. Nowak, Robert R. Robison
  • Publication number: 20170062234
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a symmetric tunnel field effect transistor and methods of manufacture. The structure includes a gate structure including a source region and a drain region both of which comprise a doped VO2 region.
    Type: Application
    Filed: March 29, 2016
    Publication date: March 2, 2017
    Inventors: Mohit BAJAJ, Suresh GUNDAPANENI, Aniruddha KONAR, Narasimha R. Mavilla, Kota V.R.M. MURALI, Edward J. NOWAK
  • Publication number: 20170062594
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a symmetric tunnel field effect transistor and methods of manufacture. The structure includes a gate structure including a source region and a drain region both of which comprise a doped VO2 region.
    Type: Application
    Filed: March 29, 2016
    Publication date: March 2, 2017
    Inventors: Mohit BAJAJ, Suresh GUNDAPANENI, Aniruddha KONAR, Narasimha R. Mavilla, Kota V.R.M. MURALI, Edward J. NOWAK
  • Patent number: 9570357
    Abstract: Vertical field effect transistors (FETs) with minimum pitch and methods of manufacture are disclosed. The structure includes at least one vertical fin structure and gate material contacting with the at least one vertical fin structure. The structure further includes metal material in electrical contact with the ends of the at least one vertical fin.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: February 14, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Publication number: 20170040222
    Abstract: Vertical field effect transistors (FETs) with minimum pitch and methods of manufacture are disclosed. The structure includes at least one vertical fin structure and gate material contacting with the at least one vertical fin structure. The structure further includes metal material in electrical contact with the ends of the at least one vertical fin.
    Type: Application
    Filed: October 18, 2016
    Publication date: February 9, 2017
    Inventors: Brent A. ANDERSON, Edward J. NOWAK
  • Patent number: RE46448
    Abstract: A semiconductor structure includes a silicon-on-insulator (SOI) substrate, the SOI substrate comprising a bottom silicon layer, a buried oxide (BOX) layer, and a top silicon layer; a plurality of active devices formed on the top silicon layer; and an isolation region located between two of the active devices, wherein at least two of the plurality of active devices are electrically isolated from each other by the isolation region, and wherein the isolation region extends through the top silicon layer to the BOX layer.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: June 20, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Brent A. Anderson, Edward J. Nowak