Patents by Inventor Elan Banin

Elan Banin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11283456
    Abstract: An apparatus for generating an oscillation signal is provided. The apparatus includes a first oscillator configured to generate a first reference oscillation signal, and a second oscillator configured to generate a second reference oscillation signal. A frequency accuracy of the first oscillator is higher than a frequency accuracy of the second oscillator. Further, an oscillator phase noise of the second oscillator is lower than an oscillator phase noise of the first oscillator. The apparatus further includes a processing circuit configured to generate a third reference oscillation signal based on the first reference oscillation signal and the second reference oscillation signal. Additionally, the apparatus includes a phase-locked loop configured to generate the oscillation signal based on the third reference oscillation signal. A frequency of the oscillation signal is a multiple of a frequency of the third reference oscillation signal.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: March 22, 2022
    Assignee: Intel Corporation
    Inventors: Ofir Degani, Igal Kushnir, Elan Banin, Rotem Banin
  • Publication number: 20220057480
    Abstract: A method and apparatus for generating a frequency-modulated continuous wave (FMCW) signal. The apparatus may include a first oscillator configured to generate a first oscillation signal, a frequency modulator configured to generate a frequency-modulated oscillation signal from the first oscillation signal based on a sequence of control words, a frequency modulation code generator configured to generate a sequence of frequency modulation codes for generating an FMCW waveform, and a frequency multiplier configured to generate the FMCW signal by up-converting the frequency-modulated oscillation signal. The sequence of control words is generated based on the sequence of frequency modulation codes. The apparatus may include a second oscillator configured to generate a second oscillation signal, and a phase detector configured to detect a phase difference between the first oscillation signal and the second oscillation signal and generate an offset code based on the phase difference.
    Type: Application
    Filed: March 12, 2019
    Publication date: February 24, 2022
    Inventors: Igal KUSHNIR, Elan BANIN, Rotem BANIN, Ofir DEGANI, Ashoke RAVI
  • Publication number: 20220029650
    Abstract: A transmitter for generating a radio frequency, RF, transmit signal is provided. The transmitter includes signal generation circuitry configured to generate, based on a sequence of first control words each indicating a respective frequency shift with respect to a target frequency of the RF transmit signal, a RF carrier signal with sequentially varying frequency over time in order to frequency spread the RF transmit signal. Further, the transmitter includes modulation circuitry configured to generate the RF transmit signal by modulating the RF carrier signal with a modulation control signal. The transmitter additionally includes modification circuitry configured to generate the modulation control signal by modifying, based on the sequence of first control words, phase information of a baseband signal bearing information to be transmitted or phase information of a signal derived from the baseband signal in order to frequency de-spread the RF transmit signal.
    Type: Application
    Filed: July 23, 2020
    Publication date: January 27, 2022
    Inventors: Elan BANIN, Ofir DEGANI, Rotem BANIN, Shahar GROSS
  • Publication number: 20210391853
    Abstract: Techniques are described related to digital radio control, partitioning, and operation. The various techniques described herein enable high-frequency local oscillator signal generation and frequency multiplication using radio-frequency (RF) digital to analog converters (RFDACs). The use of these components and others described throughout this disclosure allow for the realization of various improvements. For example, digital, analog, and hybrid beamforming control are implemented and the newly-enabled digital radio architecture partitioning enables radio components to be pushed to the radio head, allowing for the omission of high frequency cables and/or connectors.
    Type: Application
    Filed: December 28, 2018
    Publication date: December 16, 2021
    Inventors: Benjamin Jann, Ashoke Ravi, Satwik Patnaik, Elan Banin, Ofir Degani, Nebil Tanzi, Brandon Davis, Igal Kushnir, Jonathan Jensen, Sidharth Dalmia, Peter Pawliuk
  • Publication number: 20210367629
    Abstract: Techniques are described related to digital radio control and operation. The various techniques described herein enable high-frequency local oscillator (LO) signal generation using injection locked cock multipliers (ILCMs). The techniques also include the use of LO signals for carrier aggregation applications for phased array front ends. Furthermore, the disclosed techniques include the use of array element-level control using per-chain DC-DC converters. Still further, the disclosed techniques include the use of adaptive spatial filtering and optimal combining of analog-to-digital converters (ADCs) to maximize dynamic range in digital beamforming systems.
    Type: Application
    Filed: August 4, 2021
    Publication date: November 25, 2021
    Inventors: Ashoke Ravi, Benjamin Jann, Satwik Patnaik, Alexandros Margomenos, Igal Kushnir, Elan Banin, Ofir Degani
  • Patent number: 11121731
    Abstract: Techniques are described related to digital radio control and operation. The various techniques described herein enable high-frequency local oscillator (LO) signal generation using injection locked cock multipliers (ILCMs). The techniques also include the use of LO signals for carrier aggregation applications for phased array front ends. Furthermore, the disclosed techniques include the use of array element-level control using per-chain DC-DC converters. Still further, the disclosed techniques include the use of adaptive spatial filtering and optimal combining of analog-to-digital converters (ADCs) to maximize dynamic range in digital beamforming systems.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: September 14, 2021
    Assignee: Intel Corporation
    Inventors: Ashoke Ravi, Benjamin Jann, Satwik Patnaik, Elan Banin, Igal Kushnir, Ofir Degani, Alexandros Margomenos
  • Publication number: 20210265999
    Abstract: An apparatus for generating an oscillation signal is provided. The apparatus includes a first oscillator configured to generate a first reference oscillation signal, and a second oscillator configured to generate a second reference oscillation signal. A frequency accuracy of the first oscillator is higher than a frequency accuracy of the second oscillator. Further, an oscillator phase noise of the second oscillator is lower than an oscillator phase noise of the first oscillator. The apparatus further includes a processing circuit configured to generate a third reference oscillation signal based on the first reference oscillation signal and the second reference oscillation signal. Additionally, the apparatus includes a phase-locked loop configured to generate the oscillation signal based on the third reference oscillation signal. A frequency of the oscillation signal is a multiple of a frequency of the third reference oscillation signal.
    Type: Application
    Filed: August 5, 2019
    Publication date: August 26, 2021
    Inventors: Ofir DEGANI, Igal KUSHNIR, Elan BANIN, Rotem BANIN
  • Patent number: 11095427
    Abstract: A transceiver, including a modulation circuit configured to modulate a first digital word into a first modulated time signal; and a demodulation circuit configured to demodulate a second modulated time signal into a second digital word, wherein the modulation and demodulation circuits are operable without an external clock source, and inseparably share one or more same circuit elements. Also, a tunable delay line may be configured to set a time rate of the modulation, wherein the modulation circuit and the demodulation circuit inseparably share the tunable delay line.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: August 17, 2021
    Assignee: Intel Corporation
    Inventors: Rotem Banin, Elan Banin, Ofir Degani, Ronen Gernizky, Ashoke Ravi
  • Patent number: 11088891
    Abstract: A communication circuitry device for correcting a phase imbalance, the communication circuitry device comprising one or more processors configured to estimate a non-linear component of a reference signal based on a measurement of a tone at a first harmonic of a plurality of harmonics of the reference signal, estimate an in-phase component of the reference signal based on subtracting the non-linear component from a measurement of a tone at a second harmonic of the plurality of harmonics of the reference signal, and generate a calibration signal based on the estimation of the in-phase component.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: August 10, 2021
    Assignee: Intel Corporation
    Inventors: Elan Banin, Ran Shimon, Shahar Gross, Nurit Spingarn
  • Publication number: 20210199511
    Abstract: A device may comprise: a storage for storing a reference output representing an output of an electrical circuit at a reference temperature; one or more processors, configured to: determine a temperature shift based on a comparison of an output of the electrical circuit sensed at a sensing temperature and the reference output; determine a plurality of coefficients of a model of the temperature shift, wherein the model implements one or more functions that associate the plurality of coefficients and a temperature with the temperature shift at the temperature.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 1, 2021
    Inventors: Omer SHOLEV, Elan BANIN, Ofir DEGANI, Assaf BEN-BASSAT
  • Publication number: 20210112371
    Abstract: Among other things, embodiments of the present disclosure help to overcome environment-specific dependency issues of conventional Wi-Fi-based sensing systems, thus allowing a neural network to make better proximity predictions in an unseen environment. Other embodiments may be described and claimed.
    Type: Application
    Filed: December 21, 2020
    Publication date: April 15, 2021
    Inventors: Omer Sholev, Ofir Degani, Elan Banin, Uri Parker, Assaf Gurevitz
  • Publication number: 20210067182
    Abstract: Techniques are described related to digital radio control and operation. The various techniques described herein enable high-frequency local oscillator (LO) signal generation using injection locked cock multipliers (ILCMs). The techniques also include the use of LO signals for carrier aggregation applications for phased array front ends. Furthermore, the disclosed techniques include the use of array element-level control using per-chain DC-DC converters. Still further, the disclosed techniques include the use of adaptive spatial filtering and optimal combining of analog-to-digital converters (ADCs) to maximize dynamic range in digital beamforming systems.
    Type: Application
    Filed: August 26, 2019
    Publication date: March 4, 2021
    Inventors: Ashoke Ravi, Jann Benjamin, Satwik Patnaik, Elan Banin, Igal Kushnir, Ofir Degani, Alexandros Margomenos
  • Patent number: 10788794
    Abstract: A digital to time converter (DTC) system is disclosed. The DTC system comprises a DTC circuit configured to generate a DTC output clock signal at a DTC output frequency, based on a DTC code. In some embodiments, the DTC system further comprises a calibration circuit comprising a period error determination circuit configured to determine a plurality of period errors respectively associated with a plurality consecutive edges of the DTC output clock signal. In some embodiments, each period error of the plurality of period errors comprises a difference in a measured time period between two consecutive edges of the DTC output clock signal from a predefined time period. In some embodiments, the calibration circuit further comprises an integral non-linearity (INL) correction circuit configured to determine a correction to be applied to the DTC code based on a subset of the determined period errors.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: September 29, 2020
    Assignee: Intel Corporation
    Inventors: Ofir Degani, Elan Banin, Eran Ben Ami
  • Patent number: 10768580
    Abstract: A time-to-digital converter is provided. The time-to-digital converter includes a delay circuit configured to iteratively delay a reference signal for generating a plurality of delayed reference signals. Further, the time-to-digital converter includes a plurality of sample circuits each configured to sample an oscillation signal based on one of the plurality of delayed reference signals. The time-to-digital converter additionally includes a control circuit configured to de-activate at least one of the plurality of sample circuits based on a predicted value of the phase of the oscillation signal.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: September 8, 2020
    Assignee: Intel IP Corporation
    Inventors: Yair Dgani, Michael Kerner, Elan Banin, Evgeny Shumaker, Gil Horovitz, Ofir Degani, Rotem Banin, Aryeh Farber, Rotem Avivi, Eshel Gordon, Tami Sela
  • Patent number: 10707880
    Abstract: A circuit is configured to reduce a noise component of a measured phase signal. The circuit includes an input for a phase signal of an oscillator and an error signal estimator configured to determine parity information and an estimated error amplitude in the phase signal based on the parity information. The circuit further includes a combiner configured to provide the measured phase signal with the reduced noise component based on a combination of the phase signal and the estimated error amplitude.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: July 7, 2020
    Assignee: Intel IP Corporation
    Inventors: Elan Banin, Tamar Marom, Gil Horovitz, Rotem Banin
  • Publication number: 20200212943
    Abstract: An apparatus for generating a data signal comprises a processing circuit configured to generate the data signal, the data signal comprising a sequence of a first signal edge of a first type, a second signal edge of a second type, and a third signal edge of the first type, the first signal edge and the second signal edge being separated by a first time period corresponding to first data to be transmitted, and the second signal edge and the third signal edge being separated by a second time period corresponding to second data to be transmitted. An output interface circuit is configured to output the data signal.
    Type: Application
    Filed: September 17, 2018
    Publication date: July 2, 2020
    Inventors: Elan Banin, Eytan Mann, Rotem Banin, Ronen Gernizky, Ofir Degani, Igal Kushnir, Shahar Porat, Amir Rubin, Vladimir Volokitin, Elinor Kashani, Dmitry Felsenstein, Ayal Eshkoli, Tal Davidson, Eng Hun Ooi, Yossi Tsfati, Ran Shimon
  • Patent number: 10686451
    Abstract: Aspects of a digital phase-lock loop (DPLL) with an adjustable delay between an output clock and a reference clock in accordance with phase noise compensation are generally described herein. An apparatus may include processing circuitry configured to, in a first mode, identify a delay element of a plurality of delay elements based on an associated delay value, and set an initial phase difference value to a phase difference value associated with the identified delay element. The processor circuitry may be further configured to, in a second mode, in a second mode, initialize the DPLL using the initial phase difference value, determine a phase error between a reference clock and a feedback clock based on the initial phase difference value, adjust an output clock signal based on the phase error.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: June 16, 2020
    Assignee: Apple Inc.
    Inventors: Yair Dgani, Michael Kerner, Elan Banin, Nati Dinur, Gil Horovitz, Rotem Banin
  • Patent number: 10680619
    Abstract: A Digital Phase Locked Loop (DPLL), including a Time-to-Digital Converter (TDC) configured generate quantized phase values of a controlled oscillator signal; and a frequency estimation circuit configured to receive the quantized phase values, determine wraparound phase of the quantized phase values, and estimate a frequency based on the quantized phase values and the wraparound phase.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: June 9, 2020
    Assignee: Intel IP Corporation
    Inventors: Elan Banin, Roy Amel, Ran Shimon, Ashoke Ravi, Nati Dinur
  • Patent number: 10659061
    Abstract: A divider-less fractional digital phase locked loop (PLL) is disclosed and can include a time-to-digital converter (TDC) to receive a reference clock signal and a digitally control oscillator (DCO) clock signal, and generate a phase difference signal based on the reference clock signal and the DCO clock signal. A counter coupled in parallel to the TDC can receive the clock signal and count an output frequency of the clock signal to detect reference noise within the reference signal that is above a threshold. A sampler can sample an output of the counter using a replica of the reference signal, and generate a plurality of samples. A sample selector can select one of the plurality of samples based on the phase difference signal. A digital phase detector (DPD) can generate an output phase measurement based on the phase difference signal and the selected sample of the plurality of samples.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: May 19, 2020
    Assignee: Intel Corporation
    Inventors: Elias Nassar, Eyal Fayneh, Inbar Falkov, Elan Banin, Rotem Banin, Ofir Degani, Samer Nassar
  • Publication number: 20200067513
    Abstract: Aspects of a digital phase-lock loop (DPLL) with an adjustable delay between an output clock and a reference clock in accordance with phase noise compensation are generally described herein. An apparatus may include processing circuitry configured to, in a first mode, identify a delay element of a plurality of delay elements based on an associated delay value, and set an initial phase difference value to a phase difference value associated with the identified delay element. The processor circuitry may be further configured to, in a second mode, in a second mode, initialize the DPLL using the initial phase difference value, determine a phase error between a reference clock and a feedback clock based on the initial phase difference value, adjust an output clock signal based on the phase error.
    Type: Application
    Filed: December 30, 2016
    Publication date: February 27, 2020
    Inventors: YAIR DGANI, Michael Kerner, Elan Banin, Nati Dinur, Gil Horovitz, Rotem Banin