Patents by Inventor Elmar Wagner

Elmar Wagner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210400498
    Abstract: The present disclosure relates to systems and methods for indicating to a spectrum access system communication preferences of a base station and/or of a network operator. Different methods may be used to indicate the communication preferences, including a dedicated type parameter transmitted with spectrum allocation requests from the base station, a rule-based system where the spectrum access system accesses communication preferences of the base station and/or network operator through an identifier corresponding to a rule definition, or the like. The spectrum access system may assign a channel to the network operator based on its communication preferences, such as to determine a channel assignment to correspond to a channel aligned with a raster of communications to be used by the network operator.
    Type: Application
    Filed: April 29, 2021
    Publication date: December 23, 2021
    Inventors: Anatoliy Sergey Ioffe, Alexander Sayenko, Elmar Wagner, Piyush Kumar Garg
  • Patent number: 11165495
    Abstract: Methods and apparatus for communicating in a wireless network including apparatus comprising transceiver circuitry to send and receive data in a plurality of time periods, defined by a time division duplex (TDD) time grid, to another entity, the plurality of time periods corresponding to a plurality of orthogonal frequency division multiplexing (OFDM) symbols and the transceiver circuitry being operable to switch from receive mode to transmit mode and/or from transmit mode to receive mode according to a flexible uplink and downlink allocation of the plurality of time periods; and baseband circuitry coupled to the transceiver circuitry to control the transceiver circuitry to switch during a switching interval embedded within a time period corresponding to an OFDM symbol of the plurality of OFDM symbols.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: November 2, 2021
    Assignee: Apple Inc.
    Inventors: Sabine Roessel, Holger Neuhaus, Yeong-Sun Hwang, Bertram Gunzelmann, Andreas Menkhoff, Elmar Wagner, Jong-Kae Fwu, Xiangyang Zhuang
  • Publication number: 20210250267
    Abstract: The present disclosure relates to systems and methods for operating transceiver circuitry to transmit or receive signals on various frequency ranges. To do so, an electronic device may determine a receive delay between one or more messages received on different component carriers and may transmit the receive delay to a base station to update how communications are transmitted on one of the component carriers. The update made to at least one of the component carriers may compensate for the receive delay between the different component carriers. Compensating for the receive delay may improve operations that delay downlink communications to reduce a likelihood or stop simultaneous downlink and uplink communications by further adjusting for delays seen at an electronic device when communicating with base stations disposed at a different distances from the electronic device.
    Type: Application
    Filed: June 30, 2020
    Publication date: August 12, 2021
    Inventors: Anatoliy Sergey Ioffe, Elmar Wagner, Jan M. Zaleski, Jie Cui, Yang Tang, Andre Hanke
  • Patent number: 11044787
    Abstract: An apparatus is configured to be employed within a base station. The apparatus comprises baseband circuitry which includes a radio frequency (RF) interface and one or more processors. The one or more processors are configured determine repetition level (RL) thresholds, allocate downlink resources, wherein the downlink resources include a repetition level (RL), send downlink data to the RF interface for transmission to a user equipment (UE) according to the RL, receive repetition feedback from the RF interface based on the transmission to the UE, and update aspects or the allocation of the downlink resources based on the repetition feedback.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: June 22, 2021
    Assignee: Apple Inc.
    Inventors: Anatoliy Ioffe, Ralf Bendlin, Debdeep Chatterjee, Marta Martinez Tarradell, Seau S. Lim, Elmar Wagner, Yang Tang
  • Publication number: 20210105607
    Abstract: An electronic device discussed herein may communicatively couple to a base station. The base station may receive a first paging cycle assignment corresponding to a first subscriber identification module (SIM) card and determine a second paging cycle assignment for use with a second SIM card. The second paging cycle assignment may be generated based on the first paging cycle assignment. The base station may communicate with the electronic device using the second paging cycle assignment. The second paging cycle assignment may guide the base station to transmit data to the electronic device without interrupting a transmission made according to the first paging cycle assignment.
    Type: Application
    Filed: July 3, 2020
    Publication date: April 8, 2021
    Inventors: Anatoliy Sergey Ioffe, Alexander Sayenko, Elmar Wagner
  • Publication number: 20210099222
    Abstract: A Multiple-Input-Multiple-Output (MIMO) antenna array configuration is described in one example comprising a plurality of Radio Frequency (RF) chains, a plurality of antenna elements, and a plurality of phase shifters, wherein the antenna elements and phase shifters form a plurality of antenna arrays, and coupled to the RF chains, and the number of antenna arrays is larger than the number of RF chains.
    Type: Application
    Filed: December 14, 2020
    Publication date: April 1, 2021
    Inventors: Yeong-Sun Hwang, Yuan Zhu, Elmar Wagner
  • Patent number: 10886879
    Abstract: The transmitter includes a digital modulator adapted to provide a digital modulated RF signal based on a multi-bit representation of data and a multi-bit representation of a carrier wave. A digital-to-analog converter (DAC) is adapted to generate an analog modulated RF signal based on the digital modulated RF signal. A resonant circuit coupled to an output of the DAC and adapted to filter undesired frequency components from the analog modulated RF signal.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: January 5, 2021
    Assignee: Intel Deutschland GmbH
    Inventor: Elmar Wagner
  • Patent number: 10873385
    Abstract: In various aspects, a Multiple-Input-Multiple-Output (MIMO) antenna array configuration, a wireless communication device, and a method for receiving multiple beamformed signals are described herein. According to at least one aspect, a MIMO antenna array configuration is described to include a plurality of Radio Frequency (RF) chains, a plurality of antenna elements, and a plurality of phase shifters. In some aspects, the antenna elements and phase shifters form a plurality of antenna arrays. The number of antenna arrays is, in at least one aspect, larger than the number of RF chains.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: December 22, 2020
    Assignee: Apple Inc.
    Inventors: Yeong-Sun Hwang, Yuan Zhu, Elmar Wagner
  • Patent number: 10756774
    Abstract: The representative embodiments discussed in the present disclosure relate to techniques in which a transmitter may operate in an uplink multiple-input, multiple-output (MIMO) mode of operation. More specifically, in some embodiments, the transmitter may concurrently transmit a first and a second signal within the same frequency band via a first and second antenna, respectively. Further, in some embodiments, the transmitter may include circuitry and/or logic to offset nonlinear interference present in the transmitted signals as a result of antenna coupling between the first and second antenna and a nonlinear element (e.g., a power amplifier) within the transmitter.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: August 25, 2020
    Assignee: APPLE INC.
    Inventors: Ioannis Sarkas, Elmar Wagner
  • Publication number: 20200259561
    Abstract: Methods and apparatus for communicating in a wireless network including apparatus comprising transceiver circuitry to send and receive data in a plurality of time periods, defined by a time division duplex (TDD) time grid, to another entity, the plurality of time periods corresponding to a plurality of orthogonal frequency division multiplexing (OFDM) symbols and the transceiver circuitry being operable to switch from receive mode to transmit mode and/or from transmit mode to receive mode according to a flexible uplink and downlink allocation of the plurality of time periods; and baseband circuitry coupled to the transceiver circuitry to control the transceiver circuitry to switch during a switching interval embedded within a time period corresponding to an OFDM symbol of the plurality of OFDM symbols.
    Type: Application
    Filed: February 14, 2020
    Publication date: August 13, 2020
    Inventors: Sabine Roessel, Holger Neuhaus, Yeong-Sun Hwang, Bertram Gunzelmann, Andreas Menkhoff, Elmar Wagner, Jong-Kae Fwu, Xiangyang Zhuang
  • Publication number: 20200195296
    Abstract: The representative embodiments discussed in the present disclosure relate to techniques in which a transmitter may operate in an uplink multiple-input, multiple-output (MIMO) mode of operation. More specifically, in some embodiments, the transmitter may concurrently transmit a first and a second signal within the same frequency band via a first and second antenna, respectively. Further, in some embodiments, the transmitter may include circuitry and/or logic to offset nonlinear interference present in the transmitted signals as a result of antenna coupling between the first and second antenna and a nonlinear element (e.g., a power amplifier) within the transmitter.
    Type: Application
    Filed: December 18, 2018
    Publication date: June 18, 2020
    Inventors: Ioannis Sarkas, Elmar Wagner
  • Patent number: 10567074
    Abstract: Methods and apparatus for communicating in a wireless network including apparatus comprising transceiver circuitry to send and receive data in a plurality of time periods, defined by a time division duplex (TDD) time grid, to another entity, the plurality of time periods corresponding to a plurality of orthogonal frequency division multiplexing (OFDM) symbols and the transceiver circuitry being operable to switch from receive mode to transmit mode and/or from transmit mode to receive mode according to a flexible uplink and downlink allocation of the plurality of time periods; and baseband circuitry coupled to the transceiver circuitry to control the transceiver circuitry to switch during a switching interval embedded within a time period corresponding to an OFDM symbol of the plurality of OFDM symbols.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: February 18, 2020
    Assignee: Apple Inc.
    Inventors: Sabine Roessel, Holger Neuhaus, Yeong-Sun Hwang, Bertram Gunzelmann, Andreas Menkhoff, Elmar Wagner, Jong-Kae Fwu, Xiangyang Zhuang
  • Publication number: 20190260457
    Abstract: In various aspects, a Multiple-Input-Multiple-Output (MIMO) antenna array configuration, a wireless communication device, and a method for receiving multiple beamformed signals are described herein. According to at least one aspect, a MIMO antenna array configuration is described to include a plurality of Radio Frequency (RF) chains, a plurality of antenna elements, and a plurality of phase shifters. In some aspects, the antenna elements and phase shifters form a plurality of antenna arrays. The number of antenna arrays is, in at least one aspect, larger than the number of RF chains.
    Type: Application
    Filed: April 1, 2016
    Publication date: August 22, 2019
    Inventors: Yeong-Sun HWANG, Yuan ZHU, Elmar WAGNER
  • Publication number: 20190215909
    Abstract: An apparatus is configured to be employed within a base station. The apparatus comprises baseband circuitry which includes a radio frequency (RF) interface and one or more processors. The one or more processors are configured determine repetition level (RL) thresholds, allocate downlink resources, wherein the downlink resources include a repetition level (RL), send downlink data to the RF interface for transmission to a user equipment (UE) according to the RL, receive repetition feedback from the RF interface based on the transmission to the UE, and update aspects or the allocation of the downlink resources based on the repetition feedback.
    Type: Application
    Filed: July 27, 2017
    Publication date: July 11, 2019
    Inventors: Anatoliy Ioffe, Ralf Bendlin, Debdeep Chatterjee, Marta Martinez Tarradell, Seau S. Lim, Elmar Wagner, Yang Tang
  • Publication number: 20190052354
    Abstract: Methods and apparatus for communicating in a wireless network including apparatus comprising transceiver circuitry to send and receive data in a plurality of time periods, defined by a time division duplex (TDD) time grid, to another entity, the plurality of time periods corresponding to a plurality of orthogonal frequency division multiplexing (OFDM) symbols and the transceiver circuitry being operable to switch from receive mode to transmit mode and/or from transmit mode to receive mode according to a flexible uplink and downlink allocation of the plurality of time periods; and baseband circuitry coupled to the transceiver circuitry to control the transceiver circuitry to switch during a switching interval embedded within a time period corresponding to an OFDM symbol of the plurality of OFDM symbols.
    Type: Application
    Filed: April 1, 2016
    Publication date: February 14, 2019
    Inventors: SABINE ROESSEL, HOLGER NEUHAUS, YEONG-SUN HWANG, BERTRAM GUNZELMANN, ANDREAS MENKHOFF, ELMAR WAGNER, JONG-KAE FWU, XIANGYANG ZHUANG
  • Patent number: 10064181
    Abstract: Sub-band allocation techniques for reduced-bandwidth machine-type communication (MTC) devices are described. In one embodiment, for example, user equipment (UE) may comprise logic, at least a portion of which is in hardware, the logic to identify a machine-type communication (MTC) sub-band allocation based on received MTC sub-band allocation information, the MTC sub-band allocation to comprise an allocation of a plurality of subcarriers to an MTC sub-band of a system bandwidth of a serving cell of the UE, the MTC sub-band allocation to define at least one MTC direct current (DC) subcarrier among the plurality of subcarriers, and a radio interface to receive a transmission via the MTC sub-band according to the MTC sub-band allocation. Other embodiments are described and claimed.
    Type: Grant
    Filed: March 28, 2015
    Date of Patent: August 28, 2018
    Assignee: INTEL IP CORPORATION
    Inventors: Seunghee Han, Debdeep Chatterjee, Gang Xiong, Elmar Wagner
  • Patent number: 9848425
    Abstract: A communication device is described comprising a first transceiver chain set to communicate signals in a first frequency range, a second transceiver chain set to communicate signals in a second frequency range or set to no communication and a controller, configured to receive an instruction for a resetting of carrier aggregation comprising a setting of the first transceiver chain or the second transceiver chain to receive signals in a third frequency range different from the first frequency range and the second frequency range, to control, in response of the reception of the instruction, the second transceiver chain to receive signals within the first frequency range simultaneously with the first transceiver chain and to control the first transceiver chain, when the communication of signals within the first frequency range by the second transceiver chain fulfills a predetermined criterion, to stop communication of signals within the first frequency range.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: December 19, 2017
    Assignee: INTEL CORPORATION
    Inventors: Sabine Roessel, Thorsten Tracht, Andre Hanke, Elmar Wagner, Andreas Menkhoff
  • Patent number: 9819442
    Abstract: In accordance with an illustrative embodiment, a method and device are provided. The method, system, and device comprise an information module and a communication module. The information module may be configured to identify information related to a plurality of signals associated with the device and identify a signal interference affecting a first signal by a second signal of the plurality of signals based on the information. The communication module may be configured to send interference information to a network interface related to the signal interference if the signal interference is identified.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: November 14, 2017
    Assignee: INTEL DEUTSCHLAND GMBH
    Inventor: Elmar Wagner
  • Publication number: 20170250652
    Abstract: Some embodiments disclosed herein relate to a transmitter. The transmitter includes a digital modulator adapted to provide a digital modulated RF signal based on a multi-bit representation of data and a multi-bit representation of a carrier wave. A digital-to-analog converter (DAC) is adapted to generate an analog modulated RF signal based on the digital modulated RF signal. A resonant circuit coupled to an output of the DAC and adapted to filter undesired frequency components from the analog modulated RF signal.
    Type: Application
    Filed: November 14, 2016
    Publication date: August 31, 2017
    Inventor: Elmar Wagner
  • Publication number: 20160119925
    Abstract: A communication device is described comprising a first transceiver chain set to communicate signals in a first frequency range, a second transceiver chain set to communicate signals in a second frequency range or set to no communication and a controller, configured to receive an instruction for a resetting of carrier aggregation comprising a setting of the first transceiver chain or the second transceiver chain to receive signals in a third frequency range different from the first frequency range and the second frequency range, to control, in response of the reception of the instruction, the second transceiver chain to receive signals within the first frequency range simultaneously with the first transceiver chain and to control the first transceiver chain, when the communication of signals within the first frequency range by the second transceiver chain fulfills a predetermined criterion, to stop communication of signals within the first frequency range.
    Type: Application
    Filed: October 28, 2014
    Publication date: April 28, 2016
    Inventors: SABINE ROESSEL, THORSTEN TRACHT, ANDRE HANKE, ELMAR WAGNER, ANDREAS MENKHOFF