Patents by Inventor Eric J. Bergman

Eric J. Bergman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200338250
    Abstract: Tubing protectors, systems including tubing protection, and methods for protecting tubing, are disclosed, such as for protecting tubing connected between a patient and a dialysis machine (e.g., peritoneal dialysis machine) during a dialysis treatment. A tubing protector may include a tubing sheath attachable to a patient. The sheath may include a first portion for receiving and protecting a length of tubing extendible in the sheath, such as to minimize collapse, kinking, blockage, or combinations thereof, along the length of the tubing. A second portion may comprise a flexible material and enclose the first portion. The first portion may comprise a resilient material, which allows for movement in the sheath and has a strength to allow for reorientation of the tubing, while withstanding deformation of the tubing along the length. The first portion may be a coil, a plurality of rings, a woven mesh, or a solid tube, or combinations thereof.
    Type: Application
    Filed: April 23, 2019
    Publication date: October 29, 2020
    Inventors: David J. Yuds, Eric J. Bergman, Maria T. Tamayo-Coffey, Jonathan F. Leclerc, Jessica M. Steuber
  • Patent number: 10546762
    Abstract: Methods of drying a semiconductor substrate may include applying a drying agent to a semiconductor substrate, where the drying agent wets the semiconductor substrate. The methods may include heating a chamber housing the semiconductor substrate to a temperature above an atmospheric pressure boiling point of the drying agent until a vapor-liquid equilibrium of the drying agent within the chamber has been reached. The methods may further include venting the chamber, where the venting vaporizes the liquid phase of the drying agent from the semiconductor substrate.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: January 28, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Eric J. Bergman, John L. Klocke, Paul McHugh, Stuart Crane, Richard W. Plavidal
  • Publication number: 20190321861
    Abstract: Systems for cleaning electroplating system components may include a seal cleaning assembly incorporated with an electroplating system. The seal cleaning assembly may include an arm pivotable between a first position and a second position. The arm may be rotatable about a central axis of the arm. The seal cleaning assembly may include a cleaning head coupled with a distal portion of the arm. The cleaning head may include a bracket having a faceplate coupled with the arm, and a housing extending from the faceplate. The housing may define one or more arcuate channels extending through the housing to a front surface of the bracket. The cleaning head may also include a rotatable cartridge extending from the housing of the bracket. The cartridge may include a mount cylinder defining one or more apertures configured to deliver a cleaning solution to a pad coupled about the mount cylinder.
    Type: Application
    Filed: April 17, 2019
    Publication date: October 24, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Joseph A. Jonathan, Kyle M. Hanson, Jason Rye, James Brown, Greg Wilson, Eric J. Bergman, Tricia A. Youngbull, Timothy Gale Stolt
  • Publication number: 20190301049
    Abstract: Systems for cleaning electroplating system components may include an electroplating apparatus including a plating bath vessel. The electroplating apparatus may include a rinsing frame extending above the plating bath vessel. The rinsing frame may include a rim extending circumferentially about an upper surface of the plating bath vessel and defining a rinsing channel between the rim and the upper surface of the plating bath vessel. The electroplating apparatus may also include a rinsing assembly including a splash guard that is translatable from a recessed first position to a second position extending at least partially across an access to the plating bath vessel. The rinsing assembly may also include a fluid nozzle extending from the rinsing frame.
    Type: Application
    Filed: March 29, 2019
    Publication date: October 3, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Nolan Zimmerman, Greg Wilson, Andrew Anten, Richard W. Plavidal, Eric J. Bergman, Tricia Youngbull, Timothy Gale Stolt, Sam Lee
  • Publication number: 20190237335
    Abstract: Electroplating systems according to the present technology may include a two-bath electroplating chamber including a separator configured to provide fluid separation between a first bath configured to maintain a catholyte during operation and a second bath configured to maintain an anolyte during operation. The electroplating systems may include a catholyte tank and an anolyte tank fluidly coupled with the two baths of the two-bath electroplating chamber. The electroplating systems may include a first pump configured to provide catholyte from the catholyte tank to the first bath. The electroplating systems may include a second pump configured to provide anolyte from the anolyte tank to the second bath. The electroplating systems may also include an oxygen-delivery apparatus configured to provide an oxygen-containing fluid within the electroplating system.
    Type: Application
    Filed: January 29, 2019
    Publication date: August 1, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Eric J. Bergman, John L. Klocke, You Wang
  • Patent number: 10354875
    Abstract: A method may include forming a sacrificial mask on a device structure, the sacrificial mask comprising a carbon-based material. The method may further include etching memory structures in exposed regions of the sacrificial mask, implanting an etch-enhancing species into the sacrificial mask, and performing a wet etch to selectively remove the sacrificial mask at etch temperature, less than 350° C.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: July 16, 2019
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Rajesh Prasad, Ning Zhan, Tzu-Yu Liu, James Cournoyer, Kyu-Ha Shim, Kwangduk Lee, John Lee Klocke, Eric J. Bergman, Terrance Lee, Harry S. Whitesell
  • Publication number: 20190214255
    Abstract: A method may include forming a sacrificial mask on a device structure, the sacrificial mask comprising a carbon-based material. The method may further include etching memory structures in exposed regions of the sacrificial mask, implanting an etch-enhancing species into the sacrificial mask, and performing a wet etch to selectively remove the sacrificial mask at etch temperature, less than 350° C.
    Type: Application
    Filed: April 6, 2018
    Publication date: July 11, 2019
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Rajesh Prasad, Ning Zhan, Tzu-Yu Liu, James Cournoyer, Kyu-Ha Shim, Kwangduk Lee, John Lee Klocke, Eric J. Bergman, Terrance Lee, Harry S. Whitesell
  • Patent number: 10240248
    Abstract: In electroplating apparatus, a paddle or agitator agitates electrolyte in a vessel to provide high velocity fluid flow at the surface of a wafer. The agitator is designed and/or moved to also selectively shield part of the wafer, for example the edge of the wafer, from the electric field in the vessel. Selectively shielding may be achieved by temporally shifting the average position of the agitator towards one side of the wafer, by omitting or shortening slots in the agitator, and/or by synchronizing movement of the agitator with rotation of the wafer.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: March 26, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Paul Van Valkenburg, Robert Mikkola, John L. Klocke, Paul R. McHugh, Gregory J. Wilson, Kyle Moran Hanson, Eric J. Bergman
  • Patent number: 10191379
    Abstract: In systems and methods for removing a photoresist film off of a wafer, the wafer is moved into a bath of a process liquid in a process tank. The process liquid removes the photoresist film from the wafer. The process liquid is pumped from the process tank to a filter assembly and moved through filter media to filter out solids from the process liquid, and the filtered process liquid is returned to the process tank. A scraper scrapes the filter media to prevent clogging of the filter media by accumulated solids.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: January 29, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Paul R. McHugh, Kyle Moran Hanson, John L. Klocke, Eric J. Bergman, Stuart Crane, Gregory J. Wilson
  • Publication number: 20190019688
    Abstract: Methods of etching a semiconductor substrate may include applying an etchant to the semiconductor substrate. The semiconductor substrate may include an exposed region of an oxygen-containing material and an exposed region of a nitrogen-containing material. The methods may include heating the semiconductor substrate from a first temperature to a second temperature. The methods may include maintaining the semiconductor substrate at the second temperature for a period of time sufficient to perform an etch of the nitrogen-containing material relative to the oxygen-containing material. The methods may also include quenching the etch subsequent the period of time.
    Type: Application
    Filed: July 16, 2018
    Publication date: January 17, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Eric J. Bergman, John L. Klocke, Charles Sharbono, Kyle Moran Hanson, Paul McHugh
  • Patent number: 10002771
    Abstract: A polymer layer on a substrate may be treated with ozone gas or with deionized water and ozone gas to increase a removal rate of the polymer layer in a chemical mechanical polishing (CMP) process. The ozone gas may be diffused directly into the polymer layer or through a thin layer of deionized water on the surface of the polymer layer and into the polymer layer. The deionized water may also be heated during the process to further enhance the diffusion of the ozone gas into the polymer layer.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: June 19, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Prayudi Lianto, Kuma Hsiung, Eric J. Bergman, John L. Klocke, Mohamed Rafi, Muhammad Azim, Guan Huei See, Arvind Sundarrajan
  • Publication number: 20180144954
    Abstract: Methods of drying a semiconductor substrate may include applying a drying agent to a semiconductor substrate, where the drying agent wets the semiconductor substrate. The methods may include heating a chamber housing the semiconductor substrate to a temperature above an atmospheric pressure boiling point of the drying agent until a vapor-liquid equilibrium of the drying agent within the chamber has been reached. The methods may further include venting the chamber, where the venting vaporizes the liquid phase of the drying agent from the semiconductor substrate.
    Type: Application
    Filed: November 15, 2017
    Publication date: May 24, 2018
    Applicant: Applied Materials, Inc.
    Inventors: Eric J. Bergman, John L. Klocke, Paul McHugh, Stuart Crane, Richard W. Plavidal
  • Publication number: 20180019119
    Abstract: Methods of drying a semiconductor substrate may include applying a drying agent to a semiconductor substrate, where the drying agent wets the semiconductor substrate. The methods may include heating a chamber housing the semiconductor substrate to a temperature above an atmospheric pressure boiling point of the drying agent until a vapor-liquid equilibrium of the drying agent within the chamber has been reached. The methods may further include venting the chamber, where the venting vaporizes the liquid phase of the drying agent from the semiconductor substrate.
    Type: Application
    Filed: July 14, 2017
    Publication date: January 18, 2018
    Applicant: Applied Materials Inc,
    Inventors: Eric J. Bergman, John L. Klocke, Paul McHugh, Stuart Crane, Richard W. Plavidal
  • Publication number: 20170357158
    Abstract: In systems and methods for removing a photoresist film off of a wafer, the wafer is moved into a bath of a process liquid in a process tank. The process liquid removes the photoresist film from the wafer. The process liquid is pumped from the process tank to a filter assembly and moved through filter media to filter out solids from the process liquid, and the filtered process liquid is returned to the process tank. A scraper scrapes the filter media to prevent clogging of the filter media by accumulated solids.
    Type: Application
    Filed: May 26, 2017
    Publication date: December 14, 2017
    Inventors: Paul R. McHugh, Kyle Moran Hanson, John L. Klocke, Eric J. Bergman, Stuart Crane, Gregory J. Wilson
  • Publication number: 20170191180
    Abstract: In one embodiment, an electroplating cell for depositing a metal onto a surface of a substrate includes an electroplating chamber configured to receive an electrolyte containing metal ions and a substrate having a surface disposed to contact the electrolyte, wherein the surface of the substrate is configured to serve as a cathode and wherein the surface of the substrate includes an anomaly region at or near the outer perimeter of the surface of the substrate, an anode disposed in the electrolyte chamber, a shielding device disposed between the cathode and the anode to shield the anomaly section, an oscillator configured to impart a relative oscillation between the cathode and the shielding device, and a power source to cause an electric field between the anode and the cathode.
    Type: Application
    Filed: January 6, 2017
    Publication date: July 6, 2017
    Applicant: APPLIED Materials, Inc.
    Inventors: Eric J. Bergman, Jeffrey J. Dennison, Marvin L. Bernt
  • Publication number: 20170051423
    Abstract: In electroplating apparatus, a paddle or agitator agitates electrolyte in a vessel to provide high velocity fluid flow at the surface of a wafer. The agitator is designed and/or moved to also selectively shield part of the wafer, for example the edge of the wafer, from the electric field in the vessel. Selectively shielding may be achieved by temporally shifting the average position of the agitator towards one side of the wafer, by omitting or shortening slots in the agitator, and/or by synchronizing movement of the agitator with rotation of the wafer.
    Type: Application
    Filed: August 10, 2016
    Publication date: February 23, 2017
    Inventors: Paul Van Valkenburg, Robert Mikkola, John L. Klocke, Paul R. McHugh, Gregory J. Wilson, Kyle Moran Hanson, Eric J. Bergman
  • Publication number: 20160333492
    Abstract: A method for electrochemically processing a microfeature workpiece includes contacting the first surface of the microfeature workpiece with a plating electrolyte in a plating chamber, wherein the plating electrolyte includes at least one metal ion, flowing the plating electrolyte from a first plating electrolyte inlet at the first end of the workpiece to a second plating electrolyte outlet at the second end of the workpiece across the center point of the workpiece, and electrochemically depositing the at least one metal ion onto the first surface of the workpiece. Another method for electrochemically processing a microfeature workpiece includes contacting a first surface of the microfeature workpiece with a plating electrolyte having at least one metal ion, heating the second surface of the workpiece using a heating method, and electrochemically depositing the at least one metal ion onto the first surface of the workpiece.
    Type: Application
    Filed: May 13, 2015
    Publication date: November 17, 2016
    Inventors: Eric J. Bergman, Charles Sharbono, Sam K. Lee
  • Publication number: 20120289056
    Abstract: Methods and etchant solutions for etching silicon nitride on a workpiece are provided. One method generally includes exposing the workpiece to a chemistry mixture including phosphoric acid and a diluent, wherein the chemistry mixture has a water content of less than 10% by volume, and heating at least one of the workpiece and the chemistry mixture to a process temperature to etch silicon nitride from the workpiece.
    Type: Application
    Filed: April 20, 2012
    Publication date: November 15, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Eric J. Bergman, Jerry Dustin Leonhard
  • Patent number: 8028978
    Abstract: A semiconductor wafer processing system has a carrier including wafer slots. A process robot engages the carrier and installs the carrier into a rotor within a process chamber. The rotor has a tapered or stepped inside surface matching a tapered or stepped outside surface of the carrier. Wafer retainers on the carrier pivot to better secure wafers within the carrier.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: October 4, 2011
    Assignee: Semitool, Inc.
    Inventors: Gordon R. Nelson, Jeffry A. Davis, Raymon F. Thompson, Eric J. Bergman
  • Publication number: 20110217848
    Abstract: A processing chamber successfully removes hardened photoresist via direct infrared radiation onto the wafer, in the presence of an acid such as sulfuric acid, optionally along with an oxidizer such as hydrogen peroxide. The processing chamber includes a fixture for holding and optionally rotating the wafer. An infrared irradiating assembly has infrared lamps outside of the processing chamber positioned to radiate infrared light into the processing chamber. The infrared lamps may be arranged to irradiate substantially the entire surface of a wafer on the rotor. A cooling assembly can be associated with the infrared radiating assembly to provide a quick cool down and avoid over-processing. Photoresist is removed using small amounts of chemical solutions.
    Type: Application
    Filed: March 3, 2010
    Publication date: September 8, 2011
    Inventors: Eric J. Bergman, Jerry Dustin Leonhard, Bryan Puch, Jason Rye