Patents by Inventor Eric J. Bergman

Eric J. Bergman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6286231
    Abstract: A method and apparatus for high-pressure drying of semiconductor wafers includes the insertion of a wafer into an open vessel, the immersion of the wafer in a liquid, pressure-sealing of the vessel, pressurization of the vessel with an inert gas, and then the controlled draining of the liquid using a moveable drain that extracts water from a depth maintained just below the gas-liquid interface. Thereafter, the pressure may be reduced in the vessel and the dry and clean wafer may be removed. The high pressure suppresses the boiling point of liquids, thus allowing higher temperatures to be used to optimize reactivity. Megasonic waves are used with pressurized fluid to enhance cleaning performance. Supercritical substances are provided in a sealed vessel containing a wafer to promote cleaning and other treatment.
    Type: Grant
    Filed: January 12, 2000
    Date of Patent: September 11, 2001
    Assignee: Semitool, Inc.
    Inventors: Eric J. Bergman, Ian Sharp, Craig P. Meuchel, H. Frederick Woods
  • Publication number: 20010017146
    Abstract: A process and apparatus for drying semiconductor wafers, includes the controlled-rate extraction of a wafer immersed in rinsing liquid, irradiation of the wafer using high intensity lights or filaments along the wafer-liquid interface, and delivery of gas streams against the wafer along the wafer-liquid interface using a gas delivery system. Heating is controlled to create a temperature gradient without evaporating rinsing fluid adhering to surfaces of the wafer. Heating by the radiation sources creates a temperature gradient in the wafer in the irradiated region that simultaneously generates a surface tension gradient in the water adhering to the wafer. The gas delivery system removes the bulk of the water adhering to the wafer surface, and also suppresses the height of the rinsing liquid adhering to the wafer, providing faster extraction of dry and highly clean wafers from the rinsing liquid. A solvent vapor is optionally injected at the wafer-liquid interface, to reduce adhesion of the liquid to the vapor.
    Type: Application
    Filed: December 19, 2000
    Publication date: August 30, 2001
    Applicant: Semitool, Inc.
    Inventor: Eric J. Bergman
  • Publication number: 20010017143
    Abstract: The invention encompasses methods for cleaning surfaces of wafers or other semiconductor articles. Oxidizing is performed using an oxidation solution which is wetted onto the surface. The oxidation solution can include one or more of: water, ozone, hydrogen chloride, sulfric acid, or hydrogen peroxide. A rinsing step removes the oxidation solution and inhibits further activity. The rinsed surface is thereafter preferably subjected to a drying step. The surface is exposed to an oxide removal vapor to remove semiconductor oxide therefrom. The oxide removal vapor can include one or more of: acids, such as a hydrogen halide, for example hydrogen fluoride or hydrogen chloride; water; isopropyl alcohol; or ozone. The processes can use centrifugal processing and spraying actions.
    Type: Application
    Filed: April 16, 2001
    Publication date: August 30, 2001
    Applicant: Semitool, Inc.
    Inventor: Eric J. Bergman
  • Patent number: 6273108
    Abstract: An apparatus for supplying a mixture of a treatment liquid and ozone for treatment of a surface of a workpiece, and a corresponding method are set forth. The preferred embodiment of the apparatus comprises a liquid supply line that is used to provide fluid communication between a reservoir containing the treatment liquid and a treatment chamber housing the workpiece. A heater is disposed to heat the workpiece, either directly or indirectly. Preferably, the workpiece is heated by heating the treatment liquid that is supplied to the workpiece. One or more nozzles accept the treatment liquid from the liquid supply line and spray it onto the surface of the workpiece while an ozone generator provides ozone into an environment containing the workpiece.
    Type: Grant
    Filed: October 3, 2000
    Date of Patent: August 14, 2001
    Assignee: Semitool, Inc.
    Inventors: Eric J. Bergman, Mignon P. Hess
  • Patent number: 6267125
    Abstract: An apparatus for supplying a mixture of a treatment liquid and ozone for treatment of a surface of a workpiece, and a corresponding method are set forth. The preferred embodiment of the apparatus comprises a liquid supply line that is used to provide fluid communication between a reservoir containing the treatment liquid and a treatment chamber housing the workpiece. A heater is disposed to heat the workpiece, either directly or indirectly. Preferably, the workpiece is heated by heating the treatment liquid that is supplied to the workpiece. One or more nozzles accept the treatment liquid from the liquid supply line and spray it onto the surface of the workpiece while an ozone generator provides ozone into an environment containing the workpiece.
    Type: Grant
    Filed: October 3, 2000
    Date of Patent: July 31, 2001
    Assignee: Semitool, Inc.
    Inventors: Eric J. Bergman, Mignon P. Hess
  • Patent number: 6240933
    Abstract: The invention encompasses methods for cleaning surfaces of wafers or other semiconductor articles. Oxidizing is performed using an oxidation solution which is wetted onto the surface. The oxidation solution can include one or more of: water, ozone, hydrogen chloride, sulfuric acid, or hydrogen peroxide. A rinsing step removes the oxidation solution and inhibits further activity. The rinsed surface is thereafter preferably subjected to a drying step. The surface is exposed to an oxide removal vapor to remove semiconductor oxide therefrom. The oxide removal vapor can include one or more of: acids, such as a hydrogen halide, for example hydrogen fluoride or hydrogen chloride; water; isopropyl alcohol; or ozone. The processes can use centrifugal processing and spraying actions.
    Type: Grant
    Filed: May 9, 1997
    Date of Patent: June 5, 2001
    Assignee: Semitool, Inc.
    Inventor: Eric J. Bergman
  • Patent number: 6199298
    Abstract: A process for drying semiconductor wafers includes loading a wafer wetted with rinsing fluid into a rotor and orientating the wafer along a substantially vertical plane. A gas saturated with a solvent vapor is passed over the wafer surfaces until condensation forms on the wafer and displaces residual fluid. The rotation of the wafer by the rotor at a first rotation speed to aids the flushing and displacement of residual fluid. The passage of a dry gas over the wafer combined with the rotation of the wafer at a second rotation speed promotes drying of solvent condensed on the wafer. The first rotation speed is limited to a rate that does not cause the condensed solvent film to evaporate as quickly as it forms. The second rotation speed may exceed that of the first rotation speed to complete the drying of the wafer. The rotor and process chamber are optionally pre-saturated with condensed solvent vapor prior to the introduction of a wafer to hasten the drying process.
    Type: Grant
    Filed: October 6, 1999
    Date of Patent: March 13, 2001
    Assignee: Semitool, Inc.
    Inventor: Eric J. Bergman
  • Patent number: 6192600
    Abstract: A process and apparatus for drying semiconductor wafers includes the controlled-rate extraction of a wafer immersed in rinsing liquid, irradiation of the wafer using high intensity lights or filaments along the wafer-liquid interface, and delivery of gas streams against the wafer along the wafer-liquid interface using a gas delivery system. Heating is controlled to create a temperature gradient without evaporating rinsing fluid adhering to surfaces of the wafer. Heating by the radiation sources creates a temperature gradient in the wafer in the irradiated region that simultaneously generates a surface tension gradient in the water adhering to the wafer. The gas delivery system removes the bulk of the water adhering to the wafer surface, and also suppresses the height of the rinsing liquid adhering to the wafer, providing faster extraction of dry and highly clean wafers from the rinsing liquid. A solvent vapor is optionally injected at the wafer-liquid interface, to reduce adhesion of the liquid to the vapor.
    Type: Grant
    Filed: September 9, 1999
    Date of Patent: February 27, 2001
    Assignee: Semitool, Inc.
    Inventor: Eric J. Bergman
  • Patent number: 6162734
    Abstract: Processing methods and systems using vapor phase processing streams made from a liquid phase source and feed gas. Some versions use multiple liquid sources and multiple vapor generators which each produce vapors which are mixed. Some of the vapor generators use metering pumps to inject a controlled flow of liquid into a controlled flow of feed gas. In some embodiments the vapors are exsiccated to reduce saturation before being introduced as a processing chamber vapor mixture into a processing chamber. The semiconductor pieces are preferably rotated within the processing chamber and can be processed in batches.
    Type: Grant
    Filed: July 1, 1999
    Date of Patent: December 19, 2000
    Assignee: Semitool, Inc.
    Inventors: Eric J. Bergman, Robert W. Berner, David Oberlitner
  • Patent number: 6022484
    Abstract: A semiconductor processing station which utilizes a processing head and processing base which are complementary to enclose a processing chamber. The processing head shown has a rotor with two portions both of which rotate. The rotor has axial movable portions which include a piece holder. The piece holder supports a wafer or other semiconductor piece being processed. The piece holder can be axially extended and retracted relative to a thin membrane which acts as a cover to prevent chemicals from reaching the back side of the wafer during processing.
    Type: Grant
    Filed: March 23, 1998
    Date of Patent: February 8, 2000
    Assignee: Semitool, Inc.
    Inventors: Martin C. Bleck, Timothy J. Reardon, Eric J. Bergman
  • Patent number: 5954911
    Abstract: Processing methods and systems using vapor phase processing streams made from a liquid phase source and feed gas. Some versions use multiple liquid sources and multiple vapor generators which each produce vapors which are mixed. Some of the vapor generators use metering pumps to inject a controlled flow of liquid into a controlled flow of feed gas. In some embodiments the vapors are exsiccated to reduce saturation before being introduced as a processing chamber vapor mixture into a processing chamber. The semiconductor pieces are preferably rotated within the processing chamber and can be processed in batches.
    Type: Grant
    Filed: February 26, 1996
    Date of Patent: September 21, 1999
    Assignee: Semitool, Inc.
    Inventors: Eric J. Bergman, Robert W. Berner, David Oberlitner
  • Patent number: 5762751
    Abstract: A semiconductor processing station which utilizes a processing head and processing base which are complementary to enclose a processing chamber. The processing head shown has a rotor with two portions both of which rotate. The rotor has axial movable portions which include a piece holder. The piece holder supports a wafer or other semiconductor piece being processed. The piece holder can be axially extended and retracted relative to a thin membrane which acts as a cover to prevent chemicals from reaching the back side of the wafer during processing.
    Type: Grant
    Filed: August 17, 1995
    Date of Patent: June 9, 1998
    Assignee: Semitool, Inc.
    Inventors: Martin C. Bleck, Timothy J. Reardon, Eric J. Bergman
  • Patent number: 5584310
    Abstract: A semiconductor processor and methods using pillar shaped liquid emitters. The emitters have emission ports upon which liquid domes of processing chemicals are formed. The domes are applied to the surface of a wafer to wash discrete areas and thereby allow gases evolved from the reaction to easily escape about the domes and through gas passageways existing about the pillars. The wafer is rotated to provide even processing of the treated surface.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: December 17, 1996
    Assignee: Semitool, Inc.
    Inventors: Eric J. Bergman, Thomas H. Oberlitner
  • Patent number: 5500081
    Abstract: Disclosed is a method for improved processing of semiconductor wafers and the like using processing chemicals, particularly hydrofluoric acid (HF) and water mixtures. Homogeneous vapor mixtures are generated from homogeneous liquid phase mixtures which are preferably recirculated, mixed and agitated. The liquid phase is advantageously circulated through a chemical chamber within the processing bowl. Exposure of wafers to vapors from the chemical chamber can be controlled by a vapor control valve which is advantageously the bottom of the processing chamber. The wafer is rotated or otherwise moved within the processing chamber to provide uniform dispersion of the homogeneous reactant vapors across the wafer surface and to facilitate vapor circulation to the processed surface. A radiative volatilization processor can be utilized to volatilize reaction by-products which form under some conditions. The processes provide efficient uniform etching with low particle count performance.
    Type: Grant
    Filed: December 5, 1994
    Date of Patent: March 19, 1996
    Inventor: Eric J. Bergman
  • Patent number: 5489341
    Abstract: A semiconductor processor and methods using pillar shaped liquid emitters. The emitters have emission ports upon which liquid domes of processing chemicals are formed. The domes are applied to the surface of a wafer to wash discrete areas and thereby allow gases evolved from the reaction to easily escape about the domes and through gas passageways existing about the pillars. The wafer is rotated to provide even processing of the treated surface.
    Type: Grant
    Filed: August 23, 1993
    Date of Patent: February 6, 1996
    Assignee: Semitool, Inc.
    Inventors: Eric J. Bergman, Thomas H. Oberlitner
  • Patent number: 5377708
    Abstract: Disclosed are apparatuses and methods for improved processing of semiconductor wafers and the like using vapor phase processing chemicals, particularly aqueous hydrofluoric acid etchants. Homogeneous vapor mixtures are generated from homogeneous liquid mixtures. Means for recirculating, mixing and agitating the liquid phase reactants are provided. In some embodiments the liquid phase is advantageously circulated through a chemical trench within the processing bowl. Exposure of wafers to vapors from the chemical trench can be controlled by a vapor control valve which is advantageously the bottom of the processing chamber. The wafer is rotated or otherwise moved within the processing chamber to provide uniform dispersion of the homogeneous reactant vapors across the wafer surface and to facilitate vapor circulation to the processed surface. A radiative volatilization processor can be utilized to volatilize reaction by-products which form under some conditions.
    Type: Grant
    Filed: April 26, 1993
    Date of Patent: January 3, 1995
    Assignee: Semitool, Inc.
    Inventors: Eric J. Bergman, Timothy J. Reardon, Raymon F. Thompson, Aleksander Owczarz
  • Patent number: 5370741
    Abstract: Disclosed are methods and apparatuses for improved processing of semiconductor wafers and the like using processing chemicals, particularly hydrofluoric acid (HF) and water mixtures. Homogeneous vapor mixtures are generated from homogeneous liquid phase mixtures which are preferably recirculated, mixed and agitated. The liquid phase is advantageously circulated through a chemical chamber within the processing bowl. Exposure of wafers to vapors from the chemical chamber can be controlled by a vapor control valve which is advantageously the bottom of the processing chamber. The wafer is rotated or otherwise moved within the processing chamber to provide uniform dispersion of the homogeneous reactant vapors across the wafer surface and to facilitate vapor circulation to the processed surface. A radiative volatilization processor can be utilized to volatilize reaction by-products which form under some conditions. The processes provide efficient uniform etching with low particle count performance.
    Type: Grant
    Filed: November 18, 1992
    Date of Patent: December 6, 1994
    Assignee: Semitool, Inc.
    Inventor: Eric J. Bergman
  • Patent number: 5357991
    Abstract: Disclosed are apparatuses and methods for improved processing of semiconductor wafers and the like using vapor phase processing chemicals, particularly aqueous hydrofluoric acid etchants. Homogeneous vapor mixtures are generated from homogeneous liquid mixtures. Means for recirculating, mixing and agitating the liquid phase reactants are provided. In some embodiments the liquid phase is advantageously circulated through a chemical trench within the processing bowl. Exposure of wafers to vapors from the chemical trench can be controlled by a vapor control valve which is advantageously the bottom of the processing chamber. The wafer is rotated or otherwise moved within the processing chamber to provide uniform dispersion of the homogeneous reactant vapors across the wafer surface and to facilitate vapor circulation to the processed surface. A radiative volatilization processor can be utilized to volatilize reaction by-products which form under some conditions.
    Type: Grant
    Filed: April 26, 1993
    Date of Patent: October 25, 1994
    Assignee: Semitool, Inc.
    Inventors: Eric J. Bergman, Timothy J. Reardon, Raymon F. Thompson, Aleksander Owczarz
  • Patent number: 5332445
    Abstract: Disclosed are methods and apparatuses for improved etching of semiconductor wafers and the like using hydrofluoric acid (HF) and water mixtures or solutions which generate equilibrium vapor mixtures of HF vapor and water vapor which serve as a homogenous etchant gas. The vapor etchants do not employ a carrier gas which will make the vapors nonhomogeneous and reduce etching rates. The vapors are preferably generated from a liquid source which is provided within a contained reaction chamber which holds the wafer. The wafer is preferably oriented with the surface being processed directed downward. The wafer is advantageously positioned above or in close proximity to the equilibrium liquid source of the vapor. The wafer is rotated at a rotational speed in the range of 20-1000 revolutions per minute to provide uniform dispersion of the homogeneous etchant gas across the wafer surface and to facilitate circulation and transfer from the liquid source into etchant gas and onto the processed surface.
    Type: Grant
    Filed: September 30, 1992
    Date of Patent: July 26, 1994
    Assignee: Semitool, Inc.
    Inventor: Eric J. Bergman
  • Patent number: 5238500
    Abstract: Disclosed are methods and apparatuses for combined etching and cleaning of semiconductor wafers and the like preferably using hydrofluoric acid (HF), hydrochloric acid (HCl) and water solutions which generate equilibrium vapor mixtures of HF vapor, HCl vapor and water vapor as a homogenous processing gas. The processing gases do not employ a carrier gas which will make the vapors nonhomogeneous and reduce etching rates. The vapors are preferably generated from a liquid source which is provided within a contained reaction chamber which holds the wafer. The wafer is preferably oriented with the surface being processed directed downward. The wafer is advantageously positioned above or in close proximity to the liquid source of the processing vapor.
    Type: Grant
    Filed: May 21, 1990
    Date of Patent: August 24, 1993
    Assignee: Semitool, Inc.
    Inventor: Eric J. Bergman