Patents by Inventor Eric J. Shero

Eric J. Shero has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10875774
    Abstract: Aluminum (Al) hydrocarbon precursor compositions are provided that can be used for vapor deposition of transition metal carbide thin films, for example aluminum-doped transition metal carbide thin films such as Al-doped titanium carbide thin films. In some embodiments, the precursor compositions comprise one or more isomers of tritertbutyl aluminum (TTBA). In some embodiments the precursor compositions comprise at least 50% of Isomer 1 of TTBA, at least 50% of Isomer 2 of TTBA, or at least 20% of a combination of Isomer 1 and Isomer 2, where Isomer 1 has the formula Al(tert-Bu)2(iso-Bu) and Isomer 2 has the formula Al(tert-Bu)(iso-Bu)2. A container containing a precursor composition comprising at least 50% of Isomer 1 or Isomer 2 or at least 20% of a combination of Isomer 1 and 2 of TTBA can be attached to a vapor deposition reactor and used to deposit transition metal carbide thin films such as Al-doped titanium carbide thin films by atomic layer deposition or chemical vapor deposition.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: December 29, 2020
    Assignee: ASM IP HOLDING B.V.
    Inventors: Eric J. Shero, Mohith E. Verghese
  • Publication number: 20200123013
    Abstract: Aluminum (Al) hydrocarbon precursor compositions are provided that can be used for vapor deposition of transition metal carbide thin films, for example aluminum-doped transition metal carbide thin films such as Al-doped titanium carbide thin films. In some embodiments, the precursor compositions comprise one or more isomers of tritertbutyl aluminum (TTBA). In some embodiments the precursor compositions comprise at least 50% of Isomer 1 of TTBA, at least 50% of Isomer 2 of TTBA, or at least 20% of a combination of Isomer 1 and Isomer 2, where Isomer 1 has the formula Al(tert-Bu)2(iso-Bu) and Isomer 2 has the formula Al(tert-Bu)(iso-Bu)2. A container containing a precursor composition comprising at least 50% of Isomer 1 or Isomer 2 or at least 20% of a combination of Isomer 1 and 2 of TTBA can be attached to a vapor deposition reactor and used to deposit transition metal carbide thin films such as Al-doped titanium carbide thin films by atomic layer deposition or chemical vapor deposition.
    Type: Application
    Filed: December 19, 2019
    Publication date: April 23, 2020
    Inventors: Eric J. Shero, Mohith E. Verghese
  • Patent number: 10556799
    Abstract: Aluminum (Al) hydrocarbon precursor compositions are provided that can be used for vapor deposition of transition metal carbide thin films, for example aluminum-doped transition metal carbide thin films such as Al-doped titanium carbide thin films. In some embodiments, the precursor compositions comprise one or more isomers of tritertbutyl aluminum (TTBA). In some embodiments the precursor compositions comprise at least 50% of Isomer 1 of TTBA, at least 50% of Isomer 2 of TTBA, or at least 20% of a combination of Isomer 1 and Isomer 2, where Isomer 1 has the formula Al(tert-Bu)2(iso-Bu) and Isomer 2 has the formula Al(tert-Bu)(iso-Bu)2. A container containing a precursor composition comprising at least 50% of Isomer 1 or Isomer 2 or at least 20% of a combination of Isomer 1 and 2 of TTBA can be attached to a vapor deposition reactor and used to deposit transition metal carbide thin films such as Al-doped titanium carbide thin films by atomic layer deposition or chemical vapor deposition.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: February 11, 2020
    Assignee: ASM IP HOLDING B.V.
    Inventors: Eric J. Shero, Mohith E. Verghese
  • Publication number: 20180339907
    Abstract: Aluminum (Al) hydrocarbon precursor compositions are provided that can be used for vapor deposition of transition metal carbide thin films, for example aluminum-doped transition metal carbide thin films such as Al-doped titanium carbide thin films. In some embodiments, the precursor compositions comprise one or more isomers of tritertbutyl aluminum (TTBA). In some embodiments the precursor compositions comprise at least 50% of Isomer 1 of TTBA, at least 50% of Isomer 2 of TTBA, or at least 20% of a combination of Isomer 1 and Isomer 2, where Isomer 1 has the formula Al(tert-Bu)2(iso-Bu) and Isomer 2 has the formula Al(tert-Bu)(iso-Bu)2. A container containing a precursor composition comprising at least 50% of Isomer 1 or Isomer 2 or at least 20% of a combination of Isomer 1 and 2 of TTBA can be attached to a vapor deposition reactor and used to deposit transition metal carbide thin films such as Al-doped titanium carbide thin films by atomic layer deposition or chemical vapor deposition.
    Type: Application
    Filed: July 30, 2018
    Publication date: November 29, 2018
    Inventors: Eric J. Shero, Mohith E. Verghese
  • Patent number: 10118828
    Abstract: Aluminum (Al) hydrocarbon precursor compositions are provided that can be used for vapor deposition of transition metal carbide thin films, for example aluminum-doped transition metal carbide thin films such as Al-doped titanium carbide thin films. In some embodiments, the precursor compositions comprise one or more isomers of tritertbutyl aluminum (TTBA). In some embodiments the precursor compositions comprise at least 50% of Isomer 1 of TTBA, at least 50% of Isomer 2 of TTBA, or at least 20% of a combination of Isomer 1 and Isomer 2, where Isomer 1 has the formula Al(tert-Bu)2(iso-Bu) and Isomer 2 has the formula Al(tert-Bu)(iso-Bu)2. A container containing a precursor composition comprising at least 50% of Isomer 1 or Isomer 2 or at least 20% of a combination of Isomer 1 and 2 of TTBA can be attached to a vapor deposition reactor and used to deposit transition metal carbide thin films such as Al-doped titanium carbide thin films by atomic layer deposition or chemical vapor deposition.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: November 6, 2018
    Assignee: ASM IP HOLDING B.V.
    Inventors: Eric J. Shero, Mohith E. Verghese
  • Publication number: 20170096345
    Abstract: Aluminum (Al) hydrocarbon precursor compositions are provided that can be used for vapor deposition of transition metal carbide thin films, for example aluminum-doped transition metal carbide thin films such as Al-doped titanium carbide thin films. In some embodiments, the precursor compositions comprise one or more isomers of tritertbutyl aluminum (TTBA). In some embodiments the precursor compositions comprise at least 50% of Isomer 1 of TTBA, at least 50% of Isomer 2 of TTBA, or at least 20% of a combination of Isomer 1 and Isomer 2, where Isomer 1 has the formula Al(tert-Bu)2(iso-Bu) and Isomer 2 has the formula Al(tert-Bu)(iso-Bu)2. A container containing a precursor composition comprising at least 50% of Isomer 1 or Isomer 2 or at least 20% of a combination of Isomer 1 and 2 of TTBA can be attached to a vapor deposition reactor and used to deposit transition metal carbide thin films such as Al-doped titanium carbide thin films by atomic layer deposition or chemical vapor deposition.
    Type: Application
    Filed: August 17, 2016
    Publication date: April 6, 2017
    Inventors: Eric J. Shero, Mohith E. Verghese
  • Patent number: 9117773
    Abstract: Methods are provided herein for forming thin films comprising oxygen by atomic layer deposition. The thin films comprising oxygen can be deposited by providing higher concentration water pulses, a higher partial pressure of water in the reaction space, and/or a higher flow rate of water to a substrate in a reaction space. Thin films comprising oxygen can be used, for example, as dielectric oxides in transistors, capacitors, integrated circuits, and other semiconductor applications.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: August 25, 2015
    Assignee: ASM America, Inc.
    Inventors: Eric J. Shero, Mohith Verghese, Jan Willem Maes
  • Patent number: 8877655
    Abstract: The present invention relates to a process and system for depositing a thin film onto a substrate. One aspect of the invention is depositing a thin film metal oxide layer using atomic layer deposition (ALD).
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: November 4, 2014
    Assignee: ASM America, Inc.
    Inventors: Eric J. Shero, Petri I. Raisanen, Sung-Hoon Jung, Chang-Gong Wang
  • Patent number: 8759226
    Abstract: A semiconductor processing apparatus includes a reaction chamber, a loading chamber, a movable support, a drive mechanism, and a control system. The reaction chamber includes a baseplate. The baseplate includes an opening. The movable support is configured to hold a workpiece. The drive mechanism is configured to move a workpiece held on the support towards the opening of the baseplate into a processing position. The control system is configured to create a positive pressure gradient between the reaction chamber and the loading chamber while the workpiece support is in motion. Purge gases flow from the reaction chamber into the loading chamber while the workpiece support is in motion. The control system is configured to create a negative pressure gradient between the reaction chamber and the loading chamber while the workpiece is being processed.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: June 24, 2014
    Assignee: ASM America, Inc.
    Inventors: Joseph C. Reed, Eric J. Shero
  • Publication number: 20130004288
    Abstract: A semiconductor processing apparatus includes a reaction chamber, a loading chamber, a movable support, a drive mechanism, and a control system. The reaction chamber includes a baseplate. The baseplate includes an opening. The movable support is configured to hold a workpiece. The drive mechanism is configured to move a workpiece held on the support towards the opening of the baseplate into a processing position. The control system is configured to create a positive pressure gradient between the reaction chamber and the loading chamber while the workpiece support is in motion. Purge gases flow from the reaction chamber into the loading chamber while the workpiece support is in motion. The control system is configured to create a negative pressure gradient between the reaction chamber and the loading chamber while the workpiece is being processed.
    Type: Application
    Filed: September 10, 2012
    Publication date: January 3, 2013
    Applicant: ASM AMERICA, INC.
    Inventors: Joseph C. Reed, Eric J. Shero
  • Patent number: 8287648
    Abstract: A semiconductor processing apparatus includes a reaction chamber, a loading chamber, a movable support, a drive mechanism, and a control system. The reaction chamber includes a baseplate. The baseplate includes an opening. The movable support is configured to hold a workpiece. The drive mechanism is configured to move a workpiece held on the support towards the opening of the baseplate into a processing position. The control system is configured to create a positive pressure gradient between the reaction chamber and the loading chamber while the workpiece support is in motion. Purge gases flow from the reaction chamber into the loading chamber while the workpiece support is in motion. The control system is configured to create a negative pressure gradient between the reaction chamber and the loading chamber while the workpiece is being processed.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: October 16, 2012
    Assignee: ASM America, Inc.
    Inventors: Joseph C Reed, Eric J Shero
  • Publication number: 20110275166
    Abstract: The present invention relates to a process and system for depositing a thin film onto a substrate. One aspect of the invention is depositing a thin film metal oxide layer using atomic layer deposition (ALD).
    Type: Application
    Filed: May 6, 2011
    Publication date: November 10, 2011
    Inventors: Eric J. Shero, Petri I. Raisanen, Sung-Hoon Jung, Chang-Gong Wang
  • Patent number: 7914847
    Abstract: Protective layers are formed on a surface of an atomic layer deposition (ALD) or chemical vapor deposition (CVD) reactor. Parts defining a reaction space for an ALD or CVD reactor can be treated, in situ or ex situ, with chemicals that deactivate reactive sites on the reaction space surface(s). A pre-treatment step can maximize the available reactive sites prior to the treatment step. With reactive sites deactivated by adsorbed treatment reactant, during subsequent processing the reactant gases have reduced reactivity or deposition upon these treated surfaces. Accordingly, purge steps can be greatly shortened and a greater number of runs can be conducted between cleaning steps to remove built-up deposition on the reactor walls.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: March 29, 2011
    Assignee: ASM America, Inc.
    Inventors: Mohith Verghese, Eric J. Shero
  • Publication number: 20110053383
    Abstract: Methods are provided herein for forming thin films comprising oxygen by atomic layer deposition. The thin films comprising oxygen can be deposited by providing higher concentration water pulses, a higher partial pressure of water in the reaction space, and/or a higher flow rate of water to a substrate in a reaction space. Thin films comprising oxygen can be used, for example, as dielectric oxides in transistors, capacitors, integrated circuits, and other semiconductor applications.
    Type: Application
    Filed: August 26, 2009
    Publication date: March 3, 2011
    Applicant: ASM AMERICA, INC.
    Inventors: Eric J. Shero, Mohith Verghese, Jan Willem Maes
  • Publication number: 20100266765
    Abstract: An apparatus and method of growing a thin film onto a substrate comprises placing a substrate in a reaction chamber and subjecting the substrate to surface reactions of a plurality of vapor-phase reactants according to the ALD method. Non-fully closing valves are placed into the reactant feed conduit and backsuction conduit of an ALD system. The non-fully closed valves are operated such that one valve is open and the other valve is closed during the purge or pulse cycle of the ALD process.
    Type: Application
    Filed: April 21, 2009
    Publication date: October 21, 2010
    Inventors: Carl L. White, Eric J. Shero
  • Patent number: 7799135
    Abstract: Protective layers are formed on a surface of an atomic layer deposition (ALD) or chemical vapor deposition (CVD) reactor. Parts defining a reaction space for an ALD or CVD reactor can be treated, in situ or ex situ, with chemicals that deactivate reactive sites on the reaction space surface(s). A pre-treatment step can maximize the available reactive sites prior to the treatment step. With reactive sites deactivated by adsorbed treatment reactant, during subsequent processing the reactant gases have reduced reactivity or deposition upon these treated surfaces. Accordingly, purge steps can be greatly shortened and a greater number of runs can be conducted between cleaning steps to remove built-up deposition on the reactor walls.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: September 21, 2010
    Assignee: ASM America, Inc.
    Inventors: Mohith Verghese, Eric J. Shero
  • Patent number: 7795160
    Abstract: Methods for forming metal silicate films are provided. The methods comprise contacting a substrate with alternating and sequential vapor phase pulses of a metal source chemical, a silicon source chemical and an oxidizing agent. In preferred embodiments, an alkyl amide metal compound and a silicon halide compound are used. Methods according to preferred embodiments can be used to form hafnium silicate and zirconium silicate films with substantially uniform film coverages on substrate surfaces comprising high aspect ratio features (e.g., vias and/or trenches).
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: September 14, 2010
    Assignee: ASM America Inc.
    Inventors: Chang-gong Wang, Eric J. Shero, Glen Wilk, Jan Willem Maes
  • Patent number: 7790556
    Abstract: Methods are provided herein for forming electrode layers over high dielectric constant (“high k”) materials. In the illustrated embodiments, a high k gate dielectric, such as zirconium oxide, is protected from reduction during a subsequent deposition of silicon-containing gate electrode. In particular, a seed deposition phase includes conditions designed for minimizing hydrogen reduction of the gate dielectric, including low hydrogen content, low temperatures and/or low partial pressures of the silicon source gas. Conditions are preferably changed for higher deposition rates and deposition continues in a bulk phase. Desirably, though, hydrogen diffusion is still minimized by controlling the above-noted parameters. In one embodiment, high k dielectric reduction is minimized through omission of a hydrogen carrier gas. In another embodiment, higher order silanes, aid in reducing hydrogen content for a given deposition rate.
    Type: Grant
    Filed: June 9, 2005
    Date of Patent: September 7, 2010
    Assignee: ASM America, Inc.
    Inventors: Christophe F. Pomarede, Michael E. Givens, Eric J. Shero, Michael A. Todd
  • Publication number: 20100202860
    Abstract: A semiconductor processing apparatus includes a reaction chamber, a loading chamber, a movable support, a drive mechanism, and a control system. The reaction chamber includes a baseplate. The baseplate includes an opening. The movable support is configured to hold a workpiece. The drive mechanism is configured to move a workpiece held on the support towards the opening of the baseplate into a processing position. The control system is configured to create a positive pressure gradient between the reaction chamber and the loading chamber while the workpiece support is in motion. Purge gases flow from the reaction chamber into the loading chamber while the workpiece support is in motion. The control system is configured to create a negative pressure gradient between the reaction chamber and the loading chamber while the workpiece is being processed.
    Type: Application
    Filed: February 9, 2009
    Publication date: August 12, 2010
    Applicant: ASM America, Inc.
    Inventors: Joseph C. Reed, Eric J. Shero
  • Patent number: D614153
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: April 20, 2010
    Assignee: ASM America, Inc.
    Inventors: Kyle Fondurulia, Eric J Shero, Mohith Verghese, Carl L White