Patents by Inventor Erik Miller

Erik Miller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180010085
    Abstract: Acoustic perfusion devices for separating biological cells from other material in a fluid mixture are disclosed. The devices include an inlet port, an outlet port, and a collection port that are connected to an acoustic chamber. An ultrasonic transducer creates an acoustic standing wave in the acoustic chamber that permits a continuous flow of fluid to be recovered through the collection port while keeping the biological cells within the acoustic chamber to be returned to the bioreactor from which the fluid mixture is being drawn.
    Type: Application
    Filed: September 5, 2017
    Publication date: January 11, 2018
    Inventors: Bart Lipkens, Erik Miller, Benjamin Ross-Johnsrud, Walter M. Presz, Kedar Chitale, Thomas J. Kennedy, III, Lauren Winiarski
  • Publication number: 20170368637
    Abstract: A welding or cladding apparatus in which one or more energy beam emitters are used to generate a wide beam spot transverse to a welding or cladding path, and one or more wide feeders feed wire to the spot to create a wide welding or cladding puddle.
    Type: Application
    Filed: June 27, 2016
    Publication date: December 28, 2017
    Inventors: William R. Giese, Erik Miller, Kirk Stema, Shuang Liu
  • Publication number: 20170356041
    Abstract: The present invention provides methods, compositions, and systems for enriching compositions for polymerase enzyme complexes. In particular, the methods, compositions, and systems of the present invention remove free polymerases from the compositions using one or more purification steps, including protease treatment, thus enriching the compositions for polymerases complexed with a template nucleic acid.
    Type: Application
    Filed: June 9, 2017
    Publication date: December 14, 2017
    Inventors: Erik Miller, Keith Bjornson, Kristofor Nyquist, Satwik Kamtekar
  • Patent number: 9822333
    Abstract: Acoustic perfusion devices for separating biological cells from other material in a fluid medium are disclosed. The devices include an inlet port, an outlet port, and a collection port that are connected to an acoustic chamber. An ultrasonic transducer creates an acoustic standing wave in the acoustic chamber that permits a continuous flow of fluid to be recovered through the collection port while keeping the biological cells within the acoustic chamber to be returned to the bioreactor from which the fluid medium is being drawn.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: November 21, 2017
    Assignee: FloDesign Sonics, Inc.
    Inventors: Bart Lipkens, Erik Miller, Benjamin Ross-Johnsrud, Walter M. Presz, Jr., Kedar Chitale, Thomas J. Kennedy, III
  • Publication number: 20170327801
    Abstract: Provided are compositions comprising recombinant DNA polymerases that include amino acid substitutions, insertions, deletions, and/or exogenous features that confer modified properties upon the polymerase for enhanced single molecule sequencing. Such properties can include enhanced metal ion coordination, reduced exonuclease activity, reduced reaction rates at one or more steps of the polymerase kinetic cycle, decreased branching fraction, altered cofactor selectivity, increased yield, increased thermostability, increased accuracy, increased speed, increased readlength, and the like. Also provided are nucleic acids which encode the polymerases with the aforementioned phenotypes, as well as methods of using such polymerases to make a DNA or to sequence a DNA template.
    Type: Application
    Filed: May 16, 2017
    Publication date: November 16, 2017
    Inventors: Satwik Kamtekar, Lei Jia, Robin Emig, Erik Miller, Walter H. Lee
  • Patent number: 9796956
    Abstract: An acoustophoresis device made up of modular components is disclosed. Several modules are disclosed herein, including ultrasonic transducer modules, input/output modules, collection well modules, and various connector modules. These permit different systems to be constructed that have appropriate fluid dynamics for separation of particles, such as biological cells, from a fluid.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: October 24, 2017
    Assignee: FloDesign Sonics, Inc.
    Inventors: Bart Lipkens, Thomas J. Kennedy, III, Jeffrey King, Jason Barnes, Brian McCarthy, Dane Mealey, Erik Miller, Walter M. Presz, Jr., Benjamin Ross-Johnsrud, John Rozembersky
  • Patent number: 9758774
    Abstract: Provided are compositions comprising recombinant DNA polymerases that include amino acid substitutions, insertions, deletions, and/or exogenous features that confer modified properties upon the polymerase for enhanced single molecule sequencing. Such properties include increased resistance to photodamage, and can also include enhanced metal ion coordination, reduced exonuclease activity, reduced reaction rates at one or more steps of the polymerase kinetic cycle, decreased branching fraction, altered cofactor selectivity, increased yield, increased thermostability, increased accuracy, increased speed, increased readlength, and the like. Also provided are nucleic acids which encode the polymerases with the aforementioned phenotypes, as well as methods of using such polymerases to make a DNA or to sequence a DNA template.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: September 12, 2017
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Satwik Kamtekar, Arek Bibillo, Walter Lee, Erik Miller, Insil Park
  • Patent number: 9752113
    Abstract: Acoustic perfusion devices for separating biological cells from other material in a fluid mixture are disclosed. The devices include an inlet port, an outlet port, and a collection port that are connected to an acoustic chamber. An ultrasonic transducer creates an acoustic standing wave in the acoustic chamber that permits a continuous flow of fluid to be recovered through the collection port while keeping the biological cells within the acoustic chamber to be returned to the bioreactor from which the fluid mixture is being drawn.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: September 5, 2017
    Assignee: FloDesign Sonics, Inc.
    Inventors: Bart Lipkens, Erik Miller, Benjamin Ross-Johnsrud, Walter M. Presz, Jr., Kedar Chitale, Thomas J. Kennedy, III, Lauren Winiarski
  • Patent number: 9745548
    Abstract: Methods are disclosed for separating beads and cells from a host fluid. The method includes flowing a mixture containing the host fluid, the beads, and the cells through an acoustophoretic device having an ultrasonic transducer including a piezoelectric material driven by a drive signal to create a multi-dimensional acoustic standing wave. A drive signal is sent to drive the at least one ultrasonic transducer to create the multi-dimensional acoustic standing wave. A recirculating fluid stream having a tangential flow path is located substantially tangential to the standing wave and separated therefrom by an interface region. A portion of the cells pass through the standing wave, and the beads are held back from the standing wave in the recirculating fluid stream at the interface region. Also disclosed is an acoustophoretic device having a coolant inlet adapted to permit the ingress of a cooling fluid into the device for cooling the transducer.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: August 29, 2017
    Assignee: FloDesign Sonics, Inc.
    Inventors: Bart Lipkens, Rudolf Gilmanshin, Louis Masi, Benjamin Ross-Johnsrud, Erik Miller, Walter M. Presz, Jr., Thomas J. Kennedy, III
  • Patent number: 9738866
    Abstract: Acoustic perfusion devices for separating biological cells from other material in a fluid mixture are disclosed. The devices include an inlet port, an outlet port, and a collection port that are connected to an acoustic chamber. An ultrasonic transducer creates an acoustic standing wave in the acoustic chamber that permits a continuous flow of fluid to be recovered through the collection port while keeping the biological cells within the acoustic chamber to be returned to the bioreactor from which the fluid mixture is being drawn.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: August 22, 2017
    Assignee: FloDesign Sonics, Inc.
    Inventors: Bart Lipkens, Erik Miller, Benjamin Ross-Johnsrud, Walter M. Presz, Jr., Kedar Chitale, Thomas J. Kennedy, III, Lauren Winiarski
  • Patent number: 9719073
    Abstract: Provided are compositions comprising recombinant DNA polymerases that include amino acid substitutions, insertions, deletions, and/or exogenous features that confer modified properties upon the polymerase for enhanced single molecule sequencing. Such properties can include enhanced metal ion coordination, reduced exonuclease activity, reduced reaction rates at one or more steps of the polymerase kinetic cycle, decreased branching fraction, altered cofactor selectivity, increased yield, increased thermostability, increased accuracy, increased speed, increased readlength, and the like. Also provided are nucleic acids which encode the polymerases with the aforementioned phenotypes, as well as methods of using such polymerases to make a DNA or to sequence a DNA template.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: August 1, 2017
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Robin Emig, Insil Park, Lei Jia, Molly He, Jeremiah Hanes, Harold Lee, Fred Christians, Satwik Kamtekar, Erik Miller
  • Publication number: 20170190001
    Abstract: An enclosure for a laser in which on side of the enclosure includes a rotatable positioner and a vertically slidable door movable between open and closed positions. With the door in the open position, the positioner is free to rotate, thereby enabling an workstation to rotate into and out of the enclosure.
    Type: Application
    Filed: January 4, 2016
    Publication date: July 6, 2017
    Inventors: Robert Brown, William R. Giese, Erik Miller
  • Publication number: 20170184580
    Abstract: Multi-biotinylated reactants are provided which can be used in divalent complexes for various applications such as colocalization, labeling, immobilization, and purification. Methods for constructing, purifying, and using the bis-biotinylated reactants are also provided. In certain embodiments, two bis-biotinylated reactants are bound to a single streptavidin tetramer to provide a complex having a 1:1 stoichiometry with respect to the bis-biotinylated reactants.
    Type: Application
    Filed: January 6, 2017
    Publication date: June 29, 2017
    Inventors: Gene Shen, Natasha Popovich, Erik Miller, Satwik Kamtekar, Keith Bjornson, Jeremiah Hanes, Stephen Yue, Lubomir Sebo, Zhong Wang
  • Patent number: 9678080
    Abstract: Multi-biotinylated reactants are provided which can be used in divalent complexes for various applications such as colocalization, labeling, immobilization, and purification. Methods for constructing, purifying, and using the bis-biotinylated reactants are also provided. In certain embodiments, two bis-biotinylated reactants are bound to a single streptavidin tetramer to provide a complex having a 1:1 stoichiometry with respect to the bis-biotinylated reactants.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: June 13, 2017
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Erik Miller, Satwik Kamtekar, Keith Bjornson, Jeremiah Hanes
  • Publication number: 20170159033
    Abstract: Provided are compositions comprising recombinant polymerases that include amino acid substitutions, insertions, deletions, and/or exogenous features that confer modified properties upon the polymerase for sequencing RNA or RNA/DNA templates. Polymerases that topologically encircle the template nucleic acid are provided. Also provided are methods of using such polymerases to make a DNA or to sequence a template comprising RNA.
    Type: Application
    Filed: October 26, 2016
    Publication date: June 8, 2017
    Inventors: Satwik Kamtekar, Jeremiah Hanes, Erik Miller, Lukasz Joachimiak
  • Publication number: 20170159119
    Abstract: The present disclosure provides methods, compositions, and systems for distributing polymerase compositions into array regions. In particular, the described methods, compositions, and systems utilize density differentials and/or additives to increase efficiency in the distribution of polymerase compositions to a surface as compared to methods utilizing only diffusion control.
    Type: Application
    Filed: November 17, 2016
    Publication date: June 8, 2017
    Inventors: Sassan SHEIKHOLESLAMI, Michael HUNKAPILLER, Natasha POPOVICH, Lei SUN, Erik MILLER, Satwik KAMTEKAR
  • Publication number: 20170138409
    Abstract: A wire conveying mechanism, preferably for a welding, cladding or additive manufacturing apparatus, with a slip clutch mechanism connectable to a motor.
    Type: Application
    Filed: November 17, 2015
    Publication date: May 18, 2017
    Inventors: William Giese, Erik Miller
  • Publication number: 20170136587
    Abstract: A method for controlling a start of a metalworking operation. The method includes detecting an initial contact between a wire being fed from a welding apparatus and a workpiece and, in response to the detection, halting feeding of the wire from the welding apparatus. The method further includes activating a high energy heat source configured to heat a tip of the wire and resuming the feeding of the wire from the welding apparatus when the tip of the wire is heated by the high energy heat source to a plastic state. The feeding of the wire is resumed by measuring a force feedback from the wire contacting the workpiece. An apparatus for implementing the method is also disclosed.
    Type: Application
    Filed: November 17, 2015
    Publication date: May 18, 2017
    Inventors: Dustin Wagner, William Giese, Rick Hutchison, Erik Miller, James Uecker
  • Publication number: 20170136567
    Abstract: A wire conveying mechanism, preferably for a welding, cladding or additive manufacturing apparatus, with a slip clutch mechanism connectable to a motor. Such a wire conveying mechanism may include a wire feeder for feeding an electrode wire in a welding system having a drive roller assembly comprising a plurality of drive rollers to grip the electrode wire and to pull the electrode wire from an electrode wire source toward a conduit and a torque-managing device operatively coupled between a motor and the drive roller assembly, wherein the torque-managing device receives the rotational force from the first motor and regulates the first torque to output a second torque to the drive roller assembly.
    Type: Application
    Filed: October 14, 2016
    Publication date: May 18, 2017
    Inventors: Thomas D. Lahti, Richard Beeson, William Giese, Erik Miller
  • Publication number: 20170137774
    Abstract: Methods are disclosed for separating beads and cells from a host fluid. The method includes flowing a mixture containing the host fluid, the beads, and the cells through an acoustophoretic device having an ultrasonic transducer including a piezoelectric material driven by a drive signal to create a multi-dimensional acoustic standing wave. A drive signal is sent to drive the at least one ultrasonic transducer to create the multi-dimensional acoustic standing wave. A recirculating fluid stream having a tangential flow path is located substantially tangential to the standing wave and separated therefrom by an interface region. A portion of the cells pass through the standing wave, and the beads are held back from the standing wave in the recirculating fluid stream at the interface region. Also disclosed is an acoustophoretic device having a coolant inlet adapted to permit the ingress of a cooling fluid into the device for cooling the transducer.
    Type: Application
    Filed: January 30, 2017
    Publication date: May 18, 2017
    Inventors: Bart Lipkens, Rudolf Gilmanshin, Louis Masi, Benjamin Ross-Johnsrud, Erik Miller, Walter M. Presz, JR., Thomas J. Kennedy, III