Patents by Inventor Ernst H. A. Granneman

Ernst H. A. Granneman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160102399
    Abstract: Atomic layer deposition apparatus for depositing a film in a continuous fashion. The apparatus includes a process tunnel, extending in a transport direction and bounded by at least a first and a second wall. The walls are mutually parallel and allow a flat substrate to be accommodated there between. The apparatus further includes a transport system for moving a train of substrates or a continuous substrate in tape form, through the tunnel. At least the first wall of the process tunnel is provided with a plurality of gas injection channels that, viewed in the transport direction, are connected successively to a first precursor gas source, a purge gas source, a second precursor gas source and a purge gas source respectively, so as to create a tunnel segment that—in use—comprises successive zones containing a first precursor gas, a purge gas, a second precursor gas and a purge gas, respectively.
    Type: Application
    Filed: December 15, 2015
    Publication date: April 14, 2016
    Inventors: Ernst H.A. Granneman, Sebastiaan E. van Nooten
  • Patent number: 9243330
    Abstract: Atomic layer deposition apparatus for depositing a film in a continuous fashion. The apparatus includes a process tunnel, extending in a transport direction and bounded by at least a first and a second wall. The walls are mutually parallel and allow a flat substrate to be accommodated there between. The apparatus further includes a transport system for moving a train of substrates or a continuous substrate in tape form, through the tunnel. At least the first wall of the process tunnel is provided with a plurality of gas injection channels that, viewed in the transport direction, are connected successively to a first precursor gas source, a purge gas source, a second precursor gas source and a purge gas source respectively, so as to create a tunnel segment that—in use—comprises successive zones containing a first precursor gas, a purge gas, a second precursor gas and a purge gas, respectively.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: January 26, 2016
    Assignee: ASM INTERNATIONAL N.V.
    Inventors: Ernst H. A. Granneman, Sebastiaan E. van Nooten
  • Patent number: 9238867
    Abstract: An atomic layer deposition apparatus for depositing a film in a continuous fashion is described. The apparatus includes a downwardly sloping process tunnel, extending in a transport direction and bounded by at least two tunnel walls. Both walls are provided with a plurality of gas injection channels, whereby the gas injection channels in at least one of the walls, viewed in the transport direction, are connected successively to a first precursor gas source, a purge gas source, a second precursor gas source and a purge gas source respectively, so as to create a series of tunnel segments that—in use—comprise successive zones containing a first precursor gas, a purge gas, a second precursor gas and a purge gas, respectively. The downward slope of the process tunnel enables gravity to drive the floatingly supported substrates through the successive segments, causing the atomic layer deposition of a film onto the substrates.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: January 19, 2016
    Assignee: ASM INTERNATIONAL N.V.
    Inventors: Ernst H. A. Granneman, Herbert Terhorst
  • Patent number: 9127340
    Abstract: Silicon is selectively oxidized relative to a metal-containing material in a partially-fabricated integrated circuit. In some embodiments, the silicon and metal-containing materials are exposed portions of a partially-fabricated integrated circuit and may form part of, e.g., a transistor. The silicon and metal-containing material are oxidized in an atmosphere containing an oxidant and a reducing agent. In some embodiments, the reducing agent is present at a concentration of about 10 vol % or less.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: September 8, 2015
    Assignee: ASM INTERNATIONAL N.V.
    Inventors: Jerome Noiray, Ernst H. A. Granneman
  • Patent number: 8889565
    Abstract: Oxygen is selectively removed from metal-containing materials in a partially-fabricated integrated circuit. In some embodiments, the partially-fabricated integrated circuit has exposed silicon and metal-containing materials, e.g., as part of a transistor. The silicon and metal-containing material are oxidized. Oxygen is subsequently removed from the metal-containing material by an anneal in an atmosphere containing a reducing agent. Advantageously, the silicon oxide formed by the silicon oxidation is maintained while oxygen is removed from the metal-containing material, thereby leaving a high quality metal-containing material along with silicon oxide.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: November 18, 2014
    Assignee: ASM International N.V.
    Inventors: Jerome Noiray, Ernst H. A. Granneman
  • Patent number: 8367548
    Abstract: Highly thermally stable metal silicides and methods utilizing the metal silicides in semiconductor processing are provided. The metal silicides are preferably nickel silicides formed by the reaction of nickel with substitutionally carbon-doped single crystalline silicon which has about 2 atomic % or more substitutional carbon. Unexpectedly, the metal silicides are stable to temperatures of about 900° C. and higher and their sheet resistances are substantially unaffected by exposure to high temperatures. The metal silicides are compatible with subsequent high temperature processing steps, including reflow anneals of BPSG.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: February 5, 2013
    Assignee: ASM America, Inc.
    Inventors: Vladimir Machkaoutsan, Ernst H. A. Granneman
  • Publication number: 20110268879
    Abstract: Atomic layer deposition apparatus for depositing a film in a continuous fashion. The apparatus includes a downwardly sloping process tunnel, extending in a transport direction and bounded by at least two tunnel walls. Both walls are provided with a plurality of gas injection channels, whereby the gas injection channels in at least one of the walls, viewed in the transport direction, are connected successively to a first precursor gas source, a purge gas source, a second precursor gas source and a purge gas source respectively, so as to create a series of tunnel segments that—in use—comprise successive zones containing a first precursor gas, a purge gas, a second precursor gas and a purge gas, respectively. The downward slope of the process tunnel enables gravity to drive the floatingly supported substrates through the successive segments, causing the atomic layer deposition of a film onto the substrates.
    Type: Application
    Filed: May 20, 2009
    Publication date: November 3, 2011
    Inventors: Ernst H. A. Granneman, Herbert Terhorst
  • Patent number: 8034410
    Abstract: Inserts are used to line openings in parts that form a semiconductor processing reactor. In some embodiments, the reactor parts delimit a reaction chamber. The reactor parts may be formed of graphite. A layer of silicon carbide is deposited on surfaces of the openings in the reactor parts and the inserts are placed in the openings. The inserts are provided with a hole, which can accept another reactor part such as a thermocouple. The insert protects the walls of the opening from abrasion caused by insertion of the other reactor part into the opening.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: October 11, 2011
    Assignee: ASM International N.V.
    Inventors: Vladimir Kuznetsov, Ernst H. A. Granneman
  • Patent number: 8002463
    Abstract: The publication discloses a method for determining a temperature of a substrate, comprising: providing a gas channel that is confined by at least one wall having a certain wall temperature; providing a substrate in said gas channel, proximate to the at least one wall, such that a gap exists between a surface of the substrate and the at least one wall; providing a gas flow with a certain mass flow rate through said gas channel, which gas flow extends at least partially through said gap; determining a pressure drop in the gas flow along the gas channel; and deriving from said pressure drop the temperature of said substrate using a pre-determined relation between the pressure drop along the gas channel, the wall temperature and the temperature of the substrate, at said mass flow rate. Also disclosed is a device for implementing the disclosed method.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: August 23, 2011
    Assignee: ASM International N.V.
    Inventors: Ernst H. A. Granneman, Pascal Vermont, Vladimir Kuznetsov
  • Publication number: 20110124199
    Abstract: Atomic layer deposition apparatus for depositing a film in a continuous fashion. The apparatus includes a process tunnel, extending in a transport direction and bounded by at least a first and a second wall. The walls are mutually parallel and allow a flat substrate to be accommodated there between. The apparatus further includes a transport system for moving a train of substrates or a continuous substrate in tape form, through the tunnel. At least the first wall of the process tunnel is provided with a plurality of gas injection channels that, viewed in the transport direction, are connected successively to a first precursor gas source, a purgegas source, a second precursor gas source and a purge gas source respectively, so as to create a tunnel segment that—in use—comprises successive zones containing a first precursor gas, a purge gas, a second precursor gas and a purge gas, respectively.
    Type: Application
    Filed: May 20, 2009
    Publication date: May 26, 2011
    Inventors: Ernst H. A. Granneman, Sebastiaan E. van Nooten
  • Publication number: 20100210117
    Abstract: Oxygen is selectively removed from metal-containing materials in a partially-fabricated integrated circuit. In some embodiments, the partially-fabricated integrated circuit has exposed silicon and metal-containing materials, e.g., as part of a transistor. The silicon and metal-containing material are oxidized. Oxygen is subsequently removed from the metal-containing material by an anneal in an atmosphere containing a reducing agent. Advantageously, the silicon oxide formed by the silicon oxidation is maintained while oxygen is removed from the metal-containing material, thereby leaving a high quality metal-containing material along with silicon oxide.
    Type: Application
    Filed: February 5, 2010
    Publication date: August 19, 2010
    Applicant: ASM International N.V.
    Inventors: Jerome Noiray, Ernst H.A. Granneman
  • Publication number: 20100209597
    Abstract: Silicon is selectively oxidized relative to a metal-containing material in a partially-fabricated integrated circuit. In some embodiments, the silicon and metal-containing materials are exposed portions of a partially-fabricated integrated circuit and may form part of, e.g., a transistor. The silicon and metal-containing material are oxidized in an atmosphere containing an oxidant and a reducing agent. In some embodiments, the reducing agent is present at a concentration of about 10 vol % or less.
    Type: Application
    Filed: February 5, 2010
    Publication date: August 19, 2010
    Applicant: ASM International N.V.
    Inventors: Jerome Noiray, Ernst H.A. Granneman
  • Patent number: 7754013
    Abstract: A deposition station allows atomic layer deposition (ALD) of films onto a substrate. The station comprises an upper and a lower substantially flat part between which a substrate is accommodated. The parts are positioned opposite each other and parallel to the substrate during processing. At least one of the parts is provided with a plurality of gas channels that allow at least two mutually reactive reactants to be discharged out of that part to the substrate. The discharge is configured to occur in a sequence of alternating, separated pulses for ALD. In addition, each part is preferably configured to be about 1 mm or less from the substrate to minimize the volume of the reaction chamber to increase the efficiency with which gases are purged from the chamber. Also, for each reactant, the upper and lower parts are preferably kept at a temperature outside of the window in which optimal ALD of that reactant occurs, thereby minimizing deposition of that reactant on deposition station surfaces.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: July 13, 2010
    Assignee: ASM International N.V.
    Inventor: Ernst H. A. Granneman
  • Patent number: 7670944
    Abstract: Method and structures are provided for conformal lining of dual damascene structures in integrated circuits. Trenches and contact vias are formed in insulating layers. The trenches and vias are exposed to alternating chemistries to form monolayers of a desired lining material. Exemplary process flows include alternately pulsed metal halide and ammonia gases injected into a constant carrier flow. Self-terminated metal layers are thus reacted with nitrogen. Near perfect step coverage allows minimal thickness for a diffusion barrier function, thereby maximizing the volume of a subsequent filling metal for any given trench and via dimensions.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: March 2, 2010
    Assignee: ASM International N.V.
    Inventors: Ivo Raaijmakers, Suvi P. Haukka, Ville A. Saanila, Pekka J. Soininen, Kai-Erik Elers, Ernst H.A. Granneman
  • Publication number: 20090310648
    Abstract: The publication discloses a method for determining a temperature of a substrate, comprising: providing a gas channel that is confined by at least one wall having a certain wall temperature; providing a substrate in said gas channel, proximate to the at least one wall, such that a gap exists between a surface of the substrate and the at least one wall; providing a gas flow with a certain mass flow rate through said gas channel, which gas flow extends at least partially through said gap; determining a pressure drop in the gas flow along the gas channel; and deriving from said pressure drop the temperature of said substrate using a pre-determined relation between the pressure drop along the gas channel, the wall temperature and the temperature of the substrate, at said mass flow rate. Also disclosed is a device for implementing the disclosed method.
    Type: Application
    Filed: June 13, 2008
    Publication date: December 17, 2009
    Applicant: ASM International N.V.
    Inventors: Ernst H.A. GRANNEMAN, Pascal VERMONT, Vladimir KUZNETSOV
  • Publication number: 20090291209
    Abstract: Atomic layer deposition apparatus for depositing a film in a continuous fashion. The apparatus includes a process tunnel, extending in a transport direction and bounded by at least a first and a second wall. The walls are mutually parallel and allow a flat substrate to be accommodated there between. The apparatus further includes a transport system for moving a train of substrates or a continuous substrate in tape form, through the tunnel. At least the first wall of the process tunnel is provided with a plurality of gas injection channels that, viewed in the transport direction, are connected successively to a first precursor gas source, a purge gas source, a second precursor gas source and a purge gas source respectively, so as to create a tunnel segment that—in use—comprises successive zones containing a first precursor gas, a purge gas, a second precursor gas and a purge gas, respectively.
    Type: Application
    Filed: May 20, 2008
    Publication date: November 26, 2009
    Applicant: ASM International N.V.
    Inventors: Ernst H.A. Granneman, Sebastiaan E. van Nooten
  • Publication number: 20090023302
    Abstract: Inserts are used to line openings in parts that form a semiconductor processing reactor. In some embodiments, the reactor parts delimit a reaction chamber. The reactor parts may be formed of graphite. A layer of silicon carbide is deposited on surfaces of the openings in the reactor parts and the inserts are placed in the openings. The inserts are provided with a hole, which can accept another reactor part such as a thermocouple. The insert protects the walls of the opening from abrasion caused by insertion of the other reactor part into the opening.
    Type: Application
    Filed: July 17, 2007
    Publication date: January 22, 2009
    Applicant: ASM INTERNATIONAL N.V.
    Inventors: Vladimir Kuznetsov, Ernst H.A. Granneman
  • Patent number: 7427329
    Abstract: A reactor for heat treatment of a substrate having a process chamber within a substrate enclosing structure, and a support structure configured to position a substrate at a predetermined spacing between the upper part and the bottom part within the process chamber during processing. Streams of gas may lift the substrate from the support structure so that the substrate floats. A plurality of heating elements is associated with at least one of the upper part and the bottom part and are arranged to define heating zones. A controller controls the heating elements individually so that each heating zone is configured to have a predetermined temperature determined by the controller. The heating zones provide for a non-uniform heating laterally across the substrate.
    Type: Grant
    Filed: April 8, 2003
    Date of Patent: September 23, 2008
    Assignee: ASM International N.V.
    Inventors: Vladimir Kuznetsov, Ernst H. A. Granneman
  • Publication number: 20080224317
    Abstract: Highly thermally stable metal silicides and methods utilizing the metal silicides in semiconductor processing are provided. The metal silicides are preferably nickel silicides formed by the reaction of nickel with substitutionally carbon-doped single crystalline silicon which has about 2 atomic % or more substitutional carbon. Unexpectedly, the metal silicides are stable to temperatures of about 900° C. and higher and their sheet resistances are substantially unaffected by exposure to high temperatures. The metal silicides are compatible with subsequent high temperature processing steps, including reflow anneals of BPSG.
    Type: Application
    Filed: February 21, 2008
    Publication date: September 18, 2008
    Applicant: ASM America, Inc.
    Inventors: Vladimir Machkaoutsan, Ernst H.A. Granneman
  • Patent number: 7410355
    Abstract: A substrate undergoes a semiconductor fabrication process at different temperatures in a reactor without changing the temperature of the reactor. The substrate is held suspended by flowing gas between two heated surfaces of the reactor. Moving the two heated surfaces in close proximity with the substrate for a particular time duration heats the substrate to a desired temperature. The desired temperature is then maintained by distancing the heated surfaces from the substrate and holding the heated surface at the increased distance to minimize further substrate heating.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: August 12, 2008
    Assignee: ASM International N.V.
    Inventors: Ernst H. A. Granneman, Vladimir I. Kuznetsov, Xavier Pages, Pascal G. Vermont, Herbert Terhorst, Gert-Jan Snijders