Patents by Inventor Eugene P. Marsh

Eugene P. Marsh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240001325
    Abstract: Devices for the manufacturing of high-quality building blocks, such as oligonucleotides, are described herein. Nano-scale devices allow for selective control over reaction conditions. Further, methods and devices described herein allow for the rapid construction of large libraries of highly accurate nucleic acids.
    Type: Application
    Filed: June 30, 2023
    Publication date: January 4, 2024
    Inventors: Eugene P. MARSH, Pierre F. INDERMUHLE, Bill James PECK
  • Publication number: 20230338913
    Abstract: Devices and methods for de novo synthesis of large and highly accurate libraries of oligonucleic acids are provided herein. Devices include structures having a main channel and microchannels, where the microchannels have a high surface area to volume ratio. Devices disclosed herein provide for de novo synthesis of oligonucleic acids having a low error rate.
    Type: Application
    Filed: May 17, 2023
    Publication date: October 26, 2023
    Inventors: William BANYAI, Bill James PECK, Andres FERNANDEZ, Siyuan CHEN, Pierre INDERMUHLE, Eugene P. MARSH
  • Publication number: 20230331765
    Abstract: Methods and devices are provided herein for surfaces for de novo nucleic acid synthesis which provide for low error rates. In addition, methods and devices are provided herein for increased nucleic acid mass yield resulting from de novo nucleic acid synthesis.
    Type: Application
    Filed: May 17, 2023
    Publication date: October 19, 2023
    Inventors: Pierre F. INDERMUHLE, Eugene P. MARSH, Andres FERNANDEZ, William BANYAI, Bill J. PECK
  • Patent number: 11745159
    Abstract: Defined sequence RNA synthesis by 3??5? direction is now well established and currently in use for synthesis and development of vast variety of therapeutic grade RNA and Si RNA etc. A number of such synthetic RNA requires a modification or labeling of 3?-end of an oligonucleotide. The synthesis of 3?-end modified RNA requiring lipophilic, long chain ligands or chromophores, using 3??5? synthesis methodology is challenging, requires corresponding solid support and generally results in low coupling efficiency and lower purity of the final oligonucleotide in general because of large amount of truncated sequences containing desired hydrophobic modification. We have approached this problem by developing reverse RNA monomer phosphoramidites for RNA synthesis in 5??3?-direction. They lead to very clean oligonucleotide synthesis allowing for introduction of various modifications at the 3?-end.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: September 5, 2023
    Assignee: Twist Bioscience Corporation
    Inventors: Eugene P. Marsh, Pierre F. Indermuhle, Bill James Peck
  • Patent number: 11697668
    Abstract: Methods and devices are provided herein for surfaces for de novo nucleic acid synthesis which provide for low error rates. In addition, methods and devices are provided herein for increased nucleic acid mass yield resulting from de novo nucleic acid synthesis.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: July 11, 2023
    Inventors: Pierre F. Indermuhle, Eugene P. Marsh, Andres Fernandez, William Banyai, Bill J. Peck
  • Patent number: 11691118
    Abstract: Devices and methods for de novo synthesis of large and highly accurate libraries of oligonucleic acids are provided herein. Devices include structures having a main channel and microchannels, where the microchannels have a high surface area to volume ratio. Devices disclosed herein provide for de novo synthesis of oligonucleic acids having a low error rate.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: July 4, 2023
    Assignee: TWIST BIOSCIENCE CORPORATION
    Inventors: William Banyai, Bill James Peck, Andres Fernandez, Siyuan Chen, Pierre Indermuhle, Eugene P. Marsh
  • Patent number: 11538991
    Abstract: A method of forming a metal chalcogenide material. The method comprises introducing a metal precursor and a chalcogenide precursor into a chamber, and reacting the metal precursor and the chalcogenide precursor to form a metal chalcogenide material on a substrate. The metal precursor is a carboxylate of an alkali metal, an alkaline earth metal, a transition metal, a post-transition metal, or a metalloid. The chalcogenide precursor is a hydride, alkyl, or aryl precursor of sulfur, selenium, or tellurium or a silylhydride, silylalkyl, or silylaryl precursor of sulfur, selenium, or tellurium. Methods of forming a memory cell including the metal chalcogenide material are also disclosed, as are memory cells including the metal chalcogenide material.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: December 27, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Eugene P. Marsh, Stefan Uhlenbrock
  • Publication number: 20220064206
    Abstract: Provided herein are compositions, devices, systems and methods for electrochemical synthesis. Further provided are devices comprising addressable electrodes controlling polynucleotide synthesis (deprotection, extension, or cleavage, etc.) The compositions, devices, systems and methods described herein provide improved synthesis, storage, density, and retrieval of biomolecule-based information.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 3, 2022
    Inventors: Andres FERNANDEZ, Eugene P. Marsh, Maryam HABIBIAN
  • Publication number: 20210170356
    Abstract: Compositions, devices, methods and systems are provided for differential functionalization of a surface of a structure to support biopolymer synthesis. Provided herein are processes which include use of lamps, lasers, and/or microcontact printing to add functional groups to surfaces for the efficient and uniform synthesis of oligonucleic acids.
    Type: Application
    Filed: February 19, 2021
    Publication date: June 10, 2021
    Inventors: Bill James PECK, Pierre INDERMUHLE, Eugene P. MARSH, Andres FERNANDEZ, David STERN
  • Publication number: 20210129108
    Abstract: Devices for the manufacturing of high-quality building blocks, such as oligonucleotides, are described herein. Nano-scale devices allow for selective control over reaction conditions. Further, methods and devices described herein allow for the rapid construction of large libraries of highly accurate nucleic acids.
    Type: Application
    Filed: December 15, 2020
    Publication date: May 6, 2021
    Inventors: Eugene P. Marsh, Pierre F. Indermuhle, Bill James Peck
  • Patent number: 10987648
    Abstract: Compositions, devices, methods and systems are provided for differential functionalization of a surface of a structure to support biopolymer synthesis. Provided herein are processes which include use of lamps, lasers, and/or microcontact printing to add functional groups to surfaces for the efficient and uniform synthesis of oligonucleic acids.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: April 27, 2021
    Assignee: Twist Bioscience Corporation
    Inventors: Bill James Peck, Pierre Indermuhle, Eugene P. Marsh, Andres Fernandez, David Stern
  • Patent number: 10894242
    Abstract: Devices for the manufacturing of high-quality building blocks, such as oligonucleotides, are described herein. Nano-scale devices allow for selective control over reaction conditions. Further, methods and devices described herein allow for the rapid construction of large libraries of highly accurate nucleic acids.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: January 19, 2021
    Assignee: TWIST BIOSCIENCE CORPORATION
    Inventors: Eugene P. Marsh, Pierre F. Indermuhle, Bill James Peck
  • Publication number: 20200330953
    Abstract: Devices and methods for de novo synthesis of large and highly accurate libraries of oligonucleic acids are provided herein. Devices include structures having a main channel and microchannels, where the microchannels have a high surface area to volume ratio. Devices disclosed herein provide for de novo synthesis of oligonucleic acids having a low error rate.
    Type: Application
    Filed: July 6, 2020
    Publication date: October 22, 2020
    Inventors: William BANYAI, Bill James PECK, Andres FERNANDEZ, Siyuan CHEN, Pierre INDERMUHLE, Eugene P. MARSH
  • Publication number: 20200299322
    Abstract: Methods and devices are provided herein for surfaces for de novo nucleic acid synthesis which provide for low error rates. In addition, methods and devices are provided herein for increased nucleic acid mass yield resulting from de novo nucleic acid synthesis.
    Type: Application
    Filed: April 21, 2020
    Publication date: September 24, 2020
    Inventors: Pierre F. Indermuhle, Eugene P. Marsh, Andres Fernandez, William Banyai, Bill J. Peck
  • Patent number: 10744477
    Abstract: Devices and methods for de novo synthesis of large and highly accurate libraries of oligonucleic acids are provided herein. Devices include structures having a main channel and microchannels, where the microchannels have a high surface area to volume ratio. Devices disclosed herein provide for de novo synthesis of oligonucleic acids having a low error rate.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: August 18, 2020
    Assignee: TWIST BIOSCIENCE CORPORATION
    Inventors: William Banyai, Bill James Peck, Andres Fernandez, Siyuan Chen, Pierre Indermuhle, Eugene P. Marsh
  • Patent number: 10700271
    Abstract: Some embodiments include methods utilizing atomic layer deposition to form material containing silicon and nitrogen (e.g., silicon nitride). The atomic layer deposition uses SiI4 as one precursor and uses a nitrogen-containing material as another precursor. Some embodiments include methods of forming a structure in which a chalcogenide region is formed over a semiconductor substrate; and in which SiI4 is used as a precursor during formation of silicon nitride material directly against a surface of the chalcogenide region.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: June 30, 2020
    Assignee: Micron Technology, Inc.
    Inventor: Eugene P. Marsh
  • Patent number: 10669304
    Abstract: Methods and devices are provided herein for surfaces for de novo nucleic acid synthesis which provide for low error rates. In addition, methods and devices are provided herein for increased nucleic acid mass yield resulting from de novo nucleic acid synthesis.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: June 2, 2020
    Assignee: TWIST BIOSCIENCE CORPORATION
    Inventors: Pierre F. Indermuhle, Eugene P. Marsh, Andres Fernandez, William Banyai, Bill J. Peck
  • Patent number: 10651375
    Abstract: Memory cells are disclosed, which cells include a cell material and an ion-source material over the cell material. A discontinuous interfacial material is included between the cell material and the ion-source material. Also disclosed are fabrication methods and semiconductor devices including the disclosed memory cells.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: May 12, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Timothy A. Quick, Eugene P. Marsh, Stefan Uhlenbrock, Chet E. Carter, Scott E. Sills
  • Publication number: 20190319187
    Abstract: A method of forming a metal chalcogenide material. The method comprises introducing a metal precursor and a chalcogenide precursor into a chamber, and reacting the metal precursor and the chalcogenide precursor to form a metal chalcogenide material on a substrate. The metal precursor is a carboxylate of an alkali metal, an alkaline earth metal, a transition metal, a post-transition metal, or a metalloid. The chalcogenide precursor is a hydride, alkyl, or aryl precursor of sulfur, selenium, or tellurium or a silylhydride, silylalkyl, or silylaryl precursor of sulfur, selenium, or tellurium. Methods of forming a memory cell including the metal chalcogenide material are also disclosed, as are memory cells including the metal chalcogenide material.
    Type: Application
    Filed: June 28, 2019
    Publication date: October 17, 2019
    Inventors: Eugene P. Marsh, Stefan Uhlenbrock
  • Patent number: 10384189
    Abstract: Compositions, devices, methods and systems are provided for differential functionalization of a surface of a structure to support biopolymer synthesis. Provided herein are processes which include use of lamps, lasers, and/or microcontact printing to add functional groups to surfaces for the efficient and uniform synthesis of oligonucleic acids.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: August 20, 2019
    Assignee: Twist Bioscience Corporation
    Inventors: Bill James Peck, Pierre Indermuhle, Eugene P. Marsh, Andres Fernandez, David Stern