Patents by Inventor Eungnak Han

Eungnak Han has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11262654
    Abstract: Chain scission resist compositions suitable for EUV lithography applications may include monomer functional groups that improve the kinetics and/or thermodynamics of the scission mechanism. Chain scission resists may include monomer functional groups that reduce the risk that leaving groups generated through the scission mechanism may chemically corrode processing equipment.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: March 1, 2022
    Assignee: Intel Corporation
    Inventors: Lauren Doyle, Marie Krysak, Patrick Theofanis, James Blackwell, Eungnak Han
  • Patent number: 11251117
    Abstract: An integrated circuit interconnect structure includes a first metallization level including a first metal line having a first sidewall and a second sidewall extending a length in a first direction. A second metal line is adjacent to the first metal line and a dielectric is between the first metal line and the second metal line. A second metallization level is above the first metallization level where the second metallization level includes a third metal line extending a length in a second direction orthogonal to the first direction. The third metal line extends over the first metal line and the second metal line but not beyond the first sidewall. A conductive via is between the first metal line and the third metal line where the conductive via does not extend beyond the first sidewall or beyond the second sidewall.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: February 15, 2022
    Assignee: Intel Corporation
    Inventors: Manish Chandhok, Leonard Guler, Paul Nyhus, Gobind Bisht, Jonathan Laib, David Shykind, Gurpreet Singh, Eungnak Han, Noriyuki Sato, Charles Wallace, Jinnie Aloysius
  • Publication number: 20210397084
    Abstract: Lined photoresist structures to facilitate fabricating back end of line (BEOL) interconnects are described. In an embodiment, a hard mask has recesses formed therein, wherein liner structures are variously disposed each on a sidewall of a respective recess. Photobuckets comprising photoresist material are also variously disposed in the recesses. The liner structures variously serve as marginal buffers to mitigate possible effects of misalignment in the exposure of photoresist material to photons or an electron beam. In another embodiment, a recess has disposed therein a liner structure and a photobucket that are both formed by self-assembly of a photoresist-based block-copolymer.
    Type: Application
    Filed: September 1, 2021
    Publication date: December 23, 2021
    Inventors: James M. BLACKWELL, Robert L. BRISTOL, Marie KRYSAK, Florian GSTREIN, Eungnak HAN, Kevin L. LIN, Rami HOURANI, Shane M. HARLSON
  • Publication number: 20210371566
    Abstract: A chemical composition includes a polymer chain having a surface anchoring group at a terminus of the polymer chain. The surface anchoring group is metal or dielectric selective and the polymer chain further includes at least one of a photo-acid generator, quencher, or a catalyst. In some embodiments, the surface anchoring group is metal selective or dielectric selective. In some embodiments, the polymer chain includes side polymer chains where the side polymer chains include polymers of photo-acid generators, quencher, or catalyst.
    Type: Application
    Filed: May 6, 2021
    Publication date: December 2, 2021
    Applicant: Intel Corporation
    Inventors: Eungnak Han, Gurpreet Singh, Tayseer Mahdi, Florian Gstrein, Lauren Doyle, Marie Krysak, James Blackwell, Robert Bristol
  • Publication number: 20210375745
    Abstract: Disclosed herein are structures and techniques utilizing directed self-assembly for microelectronic device fabrication. For example, a microelectronic structure may include a patterned region including a first conductive line and a second conductive line, wherein the second conductive line is adjacent to the first conductive line; and an unordered region having an unordered lamellar pattern, wherein the unordered region is coplanar with the patterned region.
    Type: Application
    Filed: September 25, 2020
    Publication date: December 2, 2021
    Inventors: James Munro Blackwell, Robert L. Bristol, Xuanxuan Chen, Lauren Elizabeth Doyle, Florian Gstrein, Eungnak Han, Brandon Jay Holybee, Marie Krysak, Tayseer Mahdi, Richard E. Schenker, Gurpreet Singh, Emily Susan Walker
  • Patent number: 11137681
    Abstract: Lined photoresist structures to facilitate fabricating back end of line (BEOL) interconnects are described. In an embodiment, a hard mask has recesses formed therein, wherein liner structures are variously disposed each on a sidewall of a respective recess. Photobuckets comprising photoresist material are also variously disposed in the recesses. The liner structures variously serve as marginal buffers to mitigate possible effects of misalignment in the exposure of photoresist material to photons or an electron beam. In another embodiment, a recess has disposed therein a liner structure and a photobucket that are both formed by self-assembly of a photoresist-based block-copolymer.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: October 5, 2021
    Assignee: Intel Corporation
    Inventors: James M. Blackwell, Robert L. Bristol, Marie Krysak, Florian Gstrein, Eungnak Han, Kevin L. Lin, Rami Hourani, Shane M. Harlson
  • Publication number: 20210200085
    Abstract: Chain scission resist compositions suitable for EUV lithography applications may include monomer functional groups that improve the kinetics and/or thermodynamics of the scission mechanism. Chain scission resists may include monomer functional groups that reduce the risk that leaving groups generated through the scission mechanism may chemically corrode processing equipment.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 1, 2021
    Applicant: Intel Corporation
    Inventors: Lauren Doyle, Marie Krysak, Patrick Theofanis, James Blackwell, Eungnak Han
  • Patent number: 10971394
    Abstract: A first etch stop layer is deposited on a plurality of conductive features on an insulating layer on a substrate. A second etch stop layer is deposited over an air gap between the conductive features. The first etch stop layer is etched to form a via to at least one of the conductive features.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: April 6, 2021
    Assignee: Intel Corporation
    Inventors: Manish Chandhok, Todd R. Younkin, Eungnak Han, Jasmeet S. Chawla, Marie Krysak, Hui Jae Yoo, Tristan A. Tronic
  • Publication number: 20210091194
    Abstract: Contact over active gate structures with metal oxide cap structures are described. In an example, an integrated circuit structure includes a plurality of gate structures above substrate, each of the gate structures including a gate insulating layer thereon. A plurality of conductive trench contact structures is alternating with the plurality of gate structures, each of the conductive trench contact structures including a metal oxide cap structure thereon. An interlayer dielectric material is over the plurality of gate structures and over the plurality of conductive trench contact structures. An opening is in the interlayer dielectric material and in a gate insulating layer of a corresponding one of the plurality of gate structures. A conductive via is in the opening, the conductive via in direct contact with the corresponding one of the plurality of gate structures, and the conductive via on a portion of one or more of the metal oxide cap structures.
    Type: Application
    Filed: September 23, 2019
    Publication date: March 25, 2021
    Inventors: Rami HOURANI, Richard VREELAND, Giselle ELBAZ, Manish CHANDHOK, Richard E. SCHENKER, Gurpreet SINGH, Florian GSTREIN, Nafees KABIR, Tristan A. TRONIC, Eungnak HAN
  • Patent number: 10950501
    Abstract: Fabrication schemes based on triblock copolymers for forming self-aligning vias or contacts for back end of line interconnects, and the resulting structures, are described. In an example, a method of fabricating an interconnect structure for a semiconductor die includes forming a lower metallization layer including alternating metal lines and dielectric lines above a substrate. The method also includes forming a triblock copolymer layer above the lower metallization layer. The method also includes segregating the triblock copolymer layer to form a first segregated block component over the dielectric lines of the lower metallization layer, and to form alternating second and third segregated block components disposed over the metal lines of the lower metallization layer, where the third segregated block component is photosensitive.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: March 16, 2021
    Assignee: Intel Corporation
    Inventors: Todd R. Younkin, Eungnak Han, Shane M. Harlson, James M. Blackwell
  • Publication number: 20210074632
    Abstract: An integrated circuit interconnect structure includes a first metallization level including a first metal line having a first sidewall and a second sidewall extending a length in a first direction. A second metal line is adjacent to the first metal line and a dielectric is between the first metal line and the second metal line. A second metallization level is above the first metallization level where the second metallization level includes a third metal line extending a length in a second direction orthogonal to the first direction. The third metal line extends over the first metal line and the second metal line but not beyond the first sidewall. A conductive via is between the first metal line and the third metal line where the conductive via does not extend beyond the first sidewall or beyond the second sidewall.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 11, 2021
    Applicant: Intel Corporation
    Inventors: Manish Chandhok, Leonard Guler, Paul Nyhus, Gobind Bisht, Jonathan Laib, David Shykind, Gurpreet Singh, Eungnak Han, Noriyuki Sato, Charles Wallace, Jinnie Aloysius
  • Publication number: 20210057337
    Abstract: Multifunctional molecules for selective polymer formation on conductive surfaces, and the resulting structures, are described. In an example, an integrated circuit structure includes a lower metallization layer including alternating metal lines and dielectric lines above the substrate. A molecular brush layer is on the metal lines of the lower metallization layer, the molecular brush layer including multifunctional molecules. A triblock copolymer layer is above the lower metallization layer. The triblock copolymer layer includes a first segregated block component over the dielectric lines of the lower metallization layer, and alternating second and third segregated block components on the molecular brush layer on the metal lines of the lower metallization layer, where the third segregated block component is photosensitive.
    Type: Application
    Filed: March 26, 2018
    Publication date: February 25, 2021
    Inventors: Eungnak HAN, Tayseer MAHDI, Rami HOURANI, Gurpreet SINGH, Florian GSTREIN
  • Patent number: 10892184
    Abstract: Approaches based on photobucket floor colors with selective grafting for semiconductor structure fabrication, and the resulting structures, are described. For example, a grating structure is formed above an ILD layer formed above a substrate, the grating structure including a plurality of dielectric spacers separated by alternating first trenches and second trenches, grafting a resist-inhibitor layer in the first trenches but not in the second trenches, forming photoresist in the first trenches and in the second trenches, exposing and removing the photoresist in select ones of the second trenches to a lithographic exposure to define a set of via locations, etching the set of via locations into the ILD layer, and forming a plurality of metal lines in the ILD layer, where select ones of the plurality of metal lines includes an underlying conductive via corresponding to the set of via locations.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: January 12, 2021
    Assignee: Intel Corporation
    Inventors: Robert L. Bristol, Kevin L. Lin, James M. Blackwell, Rami Hourani, Eungnak Han
  • Patent number: 10886175
    Abstract: Selective hardmask-based approaches for conductive via fabrication are described. In an example, an integrated circuit structure includes a plurality of conductive lines in an inter-layer dielectric (ILD) layer above a substrate. The plurality of conductive lines includes alternating non-recessed conductive lines and recessed conductive lines. The non-recessed conductive lines are substantially co-planar with the ILD layer, and the recessed conductive lines are recessed relative to an uppermost surface of the ILD layer. A dielectric capping layer is in recess regions above the recessed conductive lines. A hardmask layer is over the non-recessed conductive lines but not over the dielectric capping layer of the recessed conductive lines. The hardmask layer differs in composition from the dielectric capping layer. A conductive via is in an opening in the dielectric capping layer and on one of the recessed conductive lines. A portion of the conductive via is on a portion of the hardmask layer.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: January 5, 2021
    Assignee: Intel Corporation
    Inventors: Eungnak Han, Rami Hourani, Florian Gstrein, Gurpreet Singh, Scott B. Clendenning, Kevin L. Lin, Manish Chandhok
  • Publication number: 20200411501
    Abstract: An integrated circuit structure includes an active region containing more active semiconductor devices, wherein the active region comprises a first grating of metal and dielectric materials with only vertically aligned structures thereon. A transition region containing inactive structures is adjacent to the active region, wherein the transition region comprises a second grating of metal and dielectric materials having at least one of vertical aligned structures and vertical random structures thereon. Both the active regions and the transition regions have an absence of non-uniform gratings with horizontal parallel polymer sheets thereon.
    Type: Application
    Filed: June 28, 2019
    Publication date: December 31, 2020
    Inventors: Gurpreet SINGH, Eungnak HAN, Paul A. NYHUS, Florian GSTREIN, Richard E. SCHENKER
  • Publication number: 20200411427
    Abstract: An interconnect structure is disclosed. The interconnect structure includes a first line of interconnects and a second line of interconnects. The first line of interconnects and the second line of interconnects are staggered. The individual interconnects of the second line of interconnects are laterally offset from individual interconnects of the first line of interconnects. A dielectric material is adjacent to at least a portion of the individual interconnects of at least one of the first line of interconnects and the second line of interconnects.
    Type: Application
    Filed: June 27, 2019
    Publication date: December 31, 2020
    Inventors: Kevin Lai LIN, Manish CHANDHOK, Miriam RESHOTKO, Christopher JEZEWSKI, Eungnak HAN, Gurpreet SINGH, Sarah ATANASOV, Ian A. YOUNG
  • Publication number: 20200103754
    Abstract: A photoresist is disclosed. The photoresist includes a polymer with one repeating unit and an absorbing unit.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Inventors: Robert BRISTOL, Marie KRYSAK, Lauren DOYLE, James BLACKWELL, Eungnak HAN
  • Publication number: 20200058548
    Abstract: Selective hardmask-based approaches for conductive via fabrication are described. In an example, an integrated circuit structure includes a plurality of conductive lines in an inter-layer dielectric (ILD) layer above a substrate. The plurality of conductive lines includes alternating non-recessed conductive lines and recessed conductive lines. The non-recessed conductive lines are substantially co-planar with the ILD layer, and the recessed conductive lines are recessed relative to an uppermost surface of the ILD layer. A dielectric capping layer is in recess regions above the recessed conductive lines. A hardmask layer is over the non-recessed conductive lines but not over the dielectric capping layer of the recessed conductive lines. The hardmask layer differs in composition from the dielectric capping layer. A conductive via is in an opening in the dielectric capping layer and on one of the recessed conductive lines. A portion of the conductive via is on a portion of the hardmask layer.
    Type: Application
    Filed: December 23, 2016
    Publication date: February 20, 2020
    Inventors: Eungnak HAN, Rami HOURANI, Florian GSTREIN, Gurpreet SINGH, Scott B. CLENDENNING, Kevin L. LIN, Manish CHANDHOK
  • Publication number: 20200006427
    Abstract: An integrated circuit structure includes a first material block comprising a first block insulator layer and a first multilayer stack on the first block insulator layer, the first multilayer stack comprising interleaved pillar electrodes and insulator layers. A second material block is stacked on the first material block and comprises a second block insulator layer, and a second multilayer stack on the second block insulator layer, the second multilayer stack comprising interleaved pillar electrodes and insulator layers. At least one pillar extends through the first material block and the second material block, wherein the at least one pillar has a top width at a top of the first and second material blocks that is greater than a bottom width at a bottom of the first and second material blocks.
    Type: Application
    Filed: June 29, 2018
    Publication date: January 2, 2020
    Inventors: Noriyuki SATO, Kevin O'BRIEN, Eungnak HAN, Manish CHANDHOK, Gurpreet SINGH, Nafees KABIR, Kevin LIN, Rami HOURANI, Abhishek SHARMA, Hui Jae YOO
  • Publication number: 20190363008
    Abstract: Conductive cap-based approaches for conductive via fabrication is described. In an example, an integrated circuit structure includes a plurality of conductive lines in an ILD layer above a substrate. Each of the conductive lines is recessed relative to an uppermost surface of the ILD layer. A plurality of conductive caps is on corresponding ones of the plurality of conductive lines, in recess regions above each of the plurality of conductive lines. A hardmask layer is on the plurality of conductive caps and on the uppermost surface of the ILD layer. The hardmask layer includes a first hardmask component on and aligned with the plurality of conductive caps, and a second hardmask component on an aligned with regions of the uppermost surface of the ILD layer. A conductive via is in an opening in the hardmask layer and on a conductive cap of one of the plurality of conductive lines.
    Type: Application
    Filed: December 23, 2016
    Publication date: November 28, 2019
    Inventors: Florian GSTREIN, Eungnak HAN, Rami HOURANI, Ruth A. BRAIN, Paul A. NYHUS, Manish CHANDHOK, Charles H. WALLACE, Chi-Hwa TSANG