Patents by Inventor Fang Mei

Fang Mei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110198727
    Abstract: An ESD protection device is described, which includes a P-body region, a P-type doped region, an N-type doped region and an N-sinker region. The P-body region is configured in a substrate. The P-type doped region is configured in the middle of the P-body region. The N-type doped region is configured in the P-body region and surrounds the P-type doped region. The N-sinker region is configured in the substrate and surrounds the P-body region.
    Type: Application
    Filed: April 26, 2011
    Publication date: August 18, 2011
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventor: Fang-Mei Chao
  • Patent number: 7977769
    Abstract: An ESD protection device is described, which includes a first P-type doped region, a second P-type doped region, a first N-type doped region, a second N-type doped region and an isolation structure. The first P-type doped region is configured in a substrate. The second P-type doped region is configured in the first P-type doped region. The first N-type doped region is configured in the first P-type doped region and surrounds the second P-type doped region. The second N-type doped region is configured in the substrate and surrounds the first P-type doped region. The isolation structure is disposed between the first P-type doped region and the second N-type doped region, wherein a spacing is deployed between an outward edge of the first N-type doped region and the isolation structure.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: July 12, 2011
    Assignee: United Microelectronics Corp.
    Inventor: Fang-Mei Chao
  • Patent number: 7910476
    Abstract: A method and apparatus for processing a semiconductor substrate including depositing a capping layer upon a conductive material formed on the substrate, reducing oxide formation on the capping layer, and then depositing a dielectric material. A method and apparatus for processing a semiconductor substrate including depositing a capping layer upon a conductive material formed on a substrate, exposing the capping layer to a plasma, heating the substrate to more than about 100° C., and depositing a low dielectric constant material.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: March 22, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Hongbin Fang, Timothy Weidman, Fang Mei, Yaxin Wang, Arulkumar Shanmugasundram, Christopher D. Bencher, Mehul B. Naik
  • Publication number: 20110033993
    Abstract: The Complementary Metal-Oxide Semiconductor (CMOS) transistor of the present invention includes deep halo doped regions in the substrate. The fabrication of the deep halo doped regions is integrated into the process of making the lightly doped drains or the source/drain doped regions, and therefore no extra mask is required.
    Type: Application
    Filed: October 19, 2010
    Publication date: February 10, 2011
    Inventors: Ming-I Chen, Fang-Mei Chao
  • Patent number: 7843012
    Abstract: The CMOS transistor of the present invention includes deep halo doped regions in the substrate, which can avoid the occurrence of latch-up. In addition, the fabrication of the deep halo doped regions is integrated into the process of making the lightly doped drains or the source/drain doped regions, and therefore no extra mask is required.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: November 30, 2010
    Assignee: United Microelectronics Corp.
    Inventors: Ming-I Chen, Fang-Mei Chao
  • Publication number: 20100295157
    Abstract: An ESD protection device is described, which includes a first P-type doped region, a second P-type doped region, a first N-type doped region, a second N-type doped region and an isolation structure. The first P-type doped region is configured in a substrate. The second P-type doped region is configured in the first P-type doped region. The first N-type doped region is configured in the first P-type doped region and surrounds the second P-type doped region. The second N-type doped region is configured in the substrate and surrounds the first P-type doped region. The isolation structure is disposed between the first P-type doped region and the second N-type doped region, wherein a spacing is deployed between an outward edge of the first N-type doped region and the isolation structure.
    Type: Application
    Filed: May 20, 2009
    Publication date: November 25, 2010
    Applicant: United Microelectronics Corp.
    Inventor: FANG-MEI CHAO
  • Patent number: 7829356
    Abstract: A method and apparatus for improving a thin film scribing procedure is presented. Embodiments of the invention include a method and apparatus for determining a scribe setting for removal of an absorber layer of a photovoltaic device that improves contact resistance between a back contact layer and a front contact layer of the device.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: November 9, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Fang Mei, David Tanner, Tzay-Fa Su
  • Publication number: 20100267192
    Abstract: The present disclosure relates to methods and related cleaning solutions (116) for cleaning a glass substrate (10, 112), such as for removing metal ion contaminates from a glass substrate (10, 112) having a transparent conductive oxide layer (12). One method includes: providing a glass substrate (10, 112) having a transparent conductive oxide (TCO) layer (12); and exposing the glass substrate (10, 112) to a cleaning solution (116) that includes 0.5% to 5% organic acid, wherein the organic acid used includes citric acid, acetic acid, or oxalic acid.
    Type: Application
    Filed: April 16, 2009
    Publication date: October 21, 2010
    Applicant: Applied Materials, Inc.
    Inventors: FANG MEI, David Tanner
  • Patent number: 7738727
    Abstract: Brightness values of image frames are collected and counted to form a brightness distribution. The brightness distribution of the image frames is compared with predetermined brightness distributions. Brightness values of all pixels of successive image frames are adjusted according to a result of the comparison, so as to improve image contrast.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: June 15, 2010
    Assignee: NOVATEK Microelectronics Corp.
    Inventors: Rei-Hong Chang, Ming-Chang Liu, Fang-Mei Lu
  • Publication number: 20100068835
    Abstract: A method and apparatus for improving a thin film scribing procedure is presented. Embodiments of the invention include a method and apparatus for determining a scribe setting for removal of an absorber layer of a photovoltaic device that improves contact resistance between a back contact layer and a front contact layer of the device.
    Type: Application
    Filed: September 17, 2008
    Publication date: March 18, 2010
    Inventors: Fang Mei, David Tanner, Tzay-Fa Su
  • Publication number: 20100047954
    Abstract: The present invention generally relates to a system that can be used to form a photovoltaic device, or solar cell, using processing modules that are adapted to perform one or more steps in the solar cell formation process. The automated solar cell fab is generally an arrangement of automated processing modules and automation equipment that is used to form solar cell devices. The automated solar fab will thus generally comprise a substrate receiving module that is adapted to receive a substrate, one or more absorbing layer deposition cluster tools having at least one processing chamber that is adapted to deposit a silicon-containing layer on a surface of the substrate, one or more back contact deposition chambers, one or more material removal chambers, a solar cell encapsulation device, an autoclave module, an automated junction box attaching module, and one or more quality assurance modules that are adapted to test and qualify the completely formed solar cell device.
    Type: Application
    Filed: August 26, 2009
    Publication date: February 25, 2010
    Inventors: Tzay-Fa (Jeff) Su, Hien-Minh Huu Le, Fang Mei, Yong-kee Chae, Michel R. Frei, Asaf Schlezinger, Shuran Sheng, Jeffrey S. Sullivan, David Tanner
  • Patent number: 7514353
    Abstract: Embodiments of the invention generally provide methods of filling contact level features formed in a semiconductor device by depositing a barrier layer over the contact feature and then filing the layer using an PVD, CVD, ALD, electrochemical plating process (ECP) and/or electroless deposition processes. In one embodiment, the barrier layer has a catalytically active surface that will allow the electroless deposition of a metal on the barrier layer. In one aspect, the electrolessly deposited metal is copper or a copper alloy. In one aspect, the contact level feature is filled with a copper alloy by use of an electroless deposition process. In another aspect, a copper alloy is used to from a thin conductive copper layer that is used to subsequently fill features with a copper containing material by use of an ECP, PVD, CVD, and/or ALD deposition process.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: April 7, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Timothy W. Weidman, Kapila P. Wijekoon, Zhize Zhu, Avgerinos V. (Jerry) Gelatos, Amit Khandelwal, Arulkumar Shanmugasundram, Michael X. Yang, Fang Mei, Farhad K. Moghadam
  • Publication number: 20090077804
    Abstract: The present invention generally relates to a sectioning module positioned within an automated solar cell device fabrication system. The solar cell device fabrication system is adapted to receive a single large substrate and form multiple silicon thin film solar cell devices from the single large substrate.
    Type: Application
    Filed: August 29, 2008
    Publication date: March 26, 2009
    Inventors: Robert Z. Bachrach, Yong-Kee Chae, Soo Young Choi, Nicholas G.J. De Vries, Yacov Elgar, Eric A. Englhardt, Michel R. Frei, Charles Gay, Parris Hawkins, Choi (Gene) Ho, James Craig Hunter, Penchala N. Kankanala, Liwei Li, Wing Hoo (Hendrick) Lo, Danny Cam Toan Lu, Fang Mei, Stephen P. Murphy, Srujal (Steve) Patel, Matthew J.B. Saunders, Asaf Schlezinger, Shuran Sheng, Tzay-Fa (Jeff) Su, Jeffrey S. Sullivan, David Tanner, Teresa Trowbridge, Brice Walker, John M. White, Tae K. Won
  • Publication number: 20090077805
    Abstract: The present invention generally relates to a system that can be used to form a photovoltaic device, or solar cell, using processing modules that are adapted to perform one or more steps in the solar cell formation process. The automated solar cell fab is generally an arrangement of automated processing modules and automation equipment that is used to form solar cell devices. The automated solar fab will thus generally comprise a substrate receiving module that is adapted to receive a substrate, one or more absorbing layer deposition cluster tools having at least one processing chamber that is adapted to deposit a silicon-containing layer on a surface of the substrate, one or more back contact deposition chambers, one or more material removal chambers, a solar cell encapsulation device, an autoclave module, an automated junction box attaching module, and one or more quality assurance modules that are adapted to test and qualify the completely formed solar cell device.
    Type: Application
    Filed: August 29, 2008
    Publication date: March 26, 2009
    Inventors: Robert Z. BACHRACH, Yong-Kee Chae, Soo Young Choi, Nicholas G.J. De Vries, Yacov Elgar, Eric A. Englhardt, Michael R. Frei, Charles Gay, Parris Hawkins, Choi (Gene) Ho, James Craig Hunter, Penchala N. Kankanala, Liwei Li, Wing Hoo (Hendrick) Lo, Danny Cam Toan Lu, Fang Mei, Stephen P. Murphy, Srujal (Steve) Patel, Matthew J.B. Saunders, Asaf Schlezinger, Shuran Sheng, Tzay-Fa (Jeff) Su, Jeffrey S. Sullivan, David Tanner, Teresa Trowbridge, Brice Walker, John M. White, Tae K. Won
  • Publication number: 20090029544
    Abstract: A method and apparatus for processing a semiconductor substrate including depositing a capping layer upon a conductive material formed on the substrate, reducing oxide formation on the capping layer, and then depositing a dielectric material. A method and apparatus for processing a semiconductor substrate including depositing a capping layer upon a conductive material formed on a substrate, exposing the capping layer to a plasma, heating the substrate to more than about 100° C., and depositing a low dielectric constant material.
    Type: Application
    Filed: September 29, 2008
    Publication date: January 29, 2009
    Inventors: Hongbin Fang, Timothy Weidman, Fang Mei, Yaxin Wang, Arulkumar Shanmugasundram, Christopher D. Bencher, Mehul B. Naik
  • Patent number: 7459153
    Abstract: Adenovirus types 11p and 4p show a higher binding affinity and infectivity than type 5 for endothelial and carcinoma cell lines. Adenovirus type 11p shows a stronger binding to cells for neural origin, such as glioblastoma, neuroblastoma and medulloblastoma. The fact that adenovirus type 11 has a comparatively low prevalence in society, together with its high affinity and infectivity, makes it very suitable for use in gene therapy.
    Type: Grant
    Filed: January 4, 2002
    Date of Patent: December 2, 2008
    Inventors: Göran Wadell, Ya-fang Mei, Anna Segerman, Johan Skog, Kristina Lindman
  • Patent number: 7429774
    Abstract: An NMOS device having protection against electrostatic discharge. The NMOS device includes a P-substrate, a P-epitaxial layer overlying the P-substrate, a P-well in the P-epitaxial layer, an N-well in the P-epitaxial layer and encompassing the P-well, an N-Buried Layer (NBL) underneath the P-well and bordering the N-well. The P-well is fully isolated by the N-well and the NBL. The NMOS device further includes a first isolation structure consisting of a gate-insulating layer connected with a field oxide layer, which is formed on the P-epitaxial layer. A gate overlies the first isolation structure. A second isolation structure laterally spaced apart from the first isolation structure is approximately situated on the N-well. An N+ source doping region, which functions as a source of the NMOS device, is disposed in the P-well. An N+ drain doping region, which functions as a drain of the NMOS device, is disposed in the N-well.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: September 30, 2008
    Assignee: United Microelectronics Corp.
    Inventors: Chih-Nan Cheng, Yii-Chian Lu, Fang-Mei Chao
  • Publication number: 20080179686
    Abstract: The CMOS transistor of the present invention includes deep halo doped regions in the substrate, which can avoid the occurrence of latch-up. In addition, the fabrication of the deep halo doped regions is integrated into the process of making the lightly doped drains or the source/drain doped regions, and therefore no extra mask is required.
    Type: Application
    Filed: January 31, 2007
    Publication date: July 31, 2008
    Inventors: Ming-I Chen, Fang-Mei Chao
  • Publication number: 20080152489
    Abstract: A heat dissipating fan with a wire retaining device includes a housing having a first end wall and a second end wall respectively on two ends thereof. A peripheral wall is formed between the first and second end walls. At least one of the first and second end walls includes a slot extending from a side through the other side thereof. A restraining member includes a first end fixed to the peripheral wall and a second, free end not connected to the peripheral wall, forming a guide opening between the free end of the restraining member and the peripheral wall. A conductive wire is insertable through the guide opening into a space between the restraining member and the peripheral wall.
    Type: Application
    Filed: February 22, 2007
    Publication date: June 26, 2008
    Inventors: Horng Alex, Fang Mei-Chih
  • Publication number: 20070223120
    Abstract: The present invention provides a vehicular interior rearview mirror for rear passengers, comprising a mirror inserted in a flange of a mirror housing having a rear pivot for receiving a ball formed at one end of a support bar so that the mirror housing with the mirror is rotatable to a desired angle. A sleeve is fitted in a positioning tube of the support bar. An outside support tube of a headrest of a vehicular seat is snugly inserted through the sleeve fitted in the positioning tube. The support bar is then secured to the support tube by fasteners. Hereby, a rear passenger may turn the mirror housing together with the mirror relative to the ball in order to obtain an optimum viewing angle of the rearview mirror. Thus, the invention facilitates rear pessengers leaving an automobile in a right time without causing hazards by checking the images of rear objects (e.g., approaching cars) reflected by the rearview mirror when a destination is arrived.
    Type: Application
    Filed: March 23, 2006
    Publication date: September 27, 2007
    Inventor: Fang-Mei Kuo