Patents by Inventor Feng-Wei Kuo

Feng-Wei Kuo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230384525
    Abstract: A semiconductor structure including a semiconductor substrate, a first patterned dielectric layer, a grating coupler and a waveguide is provided. The semiconductor substrate includes an optical reflective layer. The first patterned dielectric layer is disposed on the semiconductor substrate and covers a portion of the optical reflective layer. The grating coupler and the waveguide are disposed on the first patterned dielectric layer, wherein the grating coupler and the waveguide are located over the optical reflective layer.
    Type: Application
    Filed: August 1, 2023
    Publication date: November 30, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Feng-Wei KUO, Wen-Shiang Liao
  • Publication number: 20230378636
    Abstract: This application relates to a device for signal transmission (e.g., radio frequency transmission) and a method for forming the device. For example, the method includes: depositing an insulating layer that includes polybenzobisoxazole (PBO) on a carrier; forming a backside layer including polyimide (PI) over the adhesive layer; forming a die-attach film (DAF) over the backside layer; forming one or more through-insulator via (TIV)-wall structures and one or more TIV-grating structures on the second backside layer; placing a die, such as a radio frequency (RF) integrated circuit (IC) die, on the DAF; encapsulating the die, the one or more TIV-wall structures, and the one or more TIV-grating structures, with a molding compound to form an antenna package including one or more antenna regions; and forming a redistribution layer (RDL) structure on the encapsulated package. The RDL structure can include one or more antenna structures coupled to the die.
    Type: Application
    Filed: July 31, 2023
    Publication date: November 23, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Feng-Wei KUO, Wen-Shiang Liao
  • Publication number: 20230367145
    Abstract: A method of forming semiconductor device includes forming an active layer in a substrate including forming components of one or more transistors; forming an MD and gate (MDG) layer over the active layer including forming a gate line; forming a metal-to-S/D (MD) contact structure; and forming a waveguide between the gate line and the MD contact structure; forming a first interconnection layer over the MDG layer including forming a first via contact structure over the gate line; forming a second via contact structure over the MD contact structure; and forming a heater between the first and second via contact structures and over the waveguide.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 16, 2023
    Inventors: Feng-Wei KUO, Chewn-Pu JOU, Huan-Neng CHEN, Lan-Chou CHO
  • Publication number: 20230367066
    Abstract: Disclosed are apparatuses for optical coupling and a system for communication. In one embodiment, an apparatus for optical coupling having an optical coupling region is disclosed. The apparatus for optical coupling includes a substrate and a core layer disposed on the substrate. The core layer includes a plurality of holes located in the optical coupling region. An effective refractive index of the core layer gradually decrease from a first end of the optical coupling region to a second end of the optical coupling region.
    Type: Application
    Filed: July 28, 2023
    Publication date: November 16, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Feng-Wei Kuo, Chewn-Pu Jou
  • Publication number: 20230367064
    Abstract: An optical device includes a waveguide configured to guide light, a taper integrated with the waveguide on a substrate configured for optical coupling, and an attenuator to degrade unwanted optical signal from the taper. The attenuator extends along one side of the taper, and includes one of a conductive structure, a doped structure and a refractive structure.
    Type: Application
    Filed: July 21, 2023
    Publication date: November 16, 2023
    Inventors: CHEWN-PU JOU, HUAN-NENG CHEN, LAN-CHOU CHO, FENG WEI KUO
  • Publication number: 20230369197
    Abstract: In some embodiments, the present disclosure relates to an integrated chip that includes an insulator layer arranged over a substrate. Further, an upper routing structure is arranged over the insulator layer and is made of a semiconductor material. A lower optical routing structure is arranged below the substrate and is embedded in a lower dielectric structure. The integrated chip further includes an anti-reflective layer that is arranged below the substrate and directly contacts the substrate.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 16, 2023
    Inventors: Weiwei Song, Chan-Hong Chern, Feng-Wei Kuo, Lan-Chou Cho, Stefan Rusu
  • Patent number: 11803008
    Abstract: An optical device includes a waveguide configured to guide light, a taper integrated with the waveguide on a substrate configured for optical coupling, and an attenuator to degrade unwanted optical signal from the taper. The attenuator extends along one side of the taper, and includes one of a conductive structure, a doped structure and a refractive structure.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: October 31, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chewn-Pu Jou, Huan-Neng Chen, Lan-Chou Cho, Feng Wei Kuo
  • Patent number: 11804515
    Abstract: In an embodiment, a circuit includes: a transformer defining an inductive footprint within a first layer; a grounded shield bounded by the inductive footprint within a second layer separate from the first layer; and a circuit component bounded by the inductive footprint within a third layer separate from the second layer, wherein: the circuit component is coupled with the transformer through the second layer, and the third layer is separated from the first layer by the second layer.
    Type: Grant
    Filed: January 26, 2022
    Date of Patent: October 31, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Feng Wei Kuo, Chewn-Pu Jou, Huan-Neng Chen, Lan-Chou Cho, Robert Bogdan Staszewski
  • Publication number: 20230341624
    Abstract: An integrated optical device includes a substrate, a waveguide structure and a grating structure. The substrate has a waveguide region and a grating region adjacent to each other. The waveguide structure is disposed on the substrate in the waveguide region. The grating structure is disposed on the substrate in the grating region. In some embodiments, the grating structure includes grating bars and grating intervals arranged alternately, and widths of the grating bars of the grating structure are varied.
    Type: Application
    Filed: April 21, 2022
    Publication date: October 26, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Feng-Wei Kuo, Wen-Shiang Liao
  • Patent number: 11791534
    Abstract: This application relates to a device for signal transmission (e.g., radio frequency transmission) and a method for forming the device. For example, the method includes: depositing an insulating layer that includes polybenzobisoxazole (PBO) on a carrier; forming a backside layer including polyimide (PI) over the adhesive layer; forming a die-attach film (DAF) over the backside layer; forming one or more through-insulator via (TIV)-wall structures and one or more TIV-grating structures on the second backside layer; placing a die, such as a radio frequency (RF) integrated circuit (IC) die, on the DAF; encapsulating the die, the one or more TIV-wall structures, and the one or more TIV-grating structures, with a molding compound to form an antenna package including one or more antenna regions; and forming a redistribution layer (RDL) structure on the encapsulated package. The RDL structure can include one or more antenna structures coupled to the die.
    Type: Grant
    Filed: August 3, 2021
    Date of Patent: October 17, 2023
    Assignee: Tawian Semiconductor Manufacturing Co., Ltd.
    Inventors: Feng-Wei Kuo, Wen-Shiang Liao
  • Patent number: 11789296
    Abstract: An optical modulator includes a dielectric layer and a waveguide. The waveguide is disposed on the dielectric layer. The waveguide includes an electrical coupling portion, a slab portion, and an optical coupling portion. The slab portion is directly in contact with both of the electrical coupling portion and the optical coupling portion. The slab portion has a first sub-portion and a second sub-portion connected to the first sub-portion. A top surface of the electrical coupling portion, a top surface of the first sub-portion, and a top surface of the second sub-portion are located at different level heights.
    Type: Grant
    Filed: January 18, 2022
    Date of Patent: October 17, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Lan-Chou Cho, Chewn-Pu Jou, Feng-Wei Kuo, Huan-Neng Chen, Min-Hsiang Hsu
  • Publication number: 20230324615
    Abstract: Disclosed are apparatuses for optical coupling and a system for communication. In one embodiment, an apparatus for optical coupling including a substrate and a grating coupler is disclosed. The grating coupler is disposed on the substrate and includes a plurality of coupling gratings arranged along a first direction, wherein effective refractive indices of the plurality of coupling gratings gradually decrease along the first direction.
    Type: Application
    Filed: June 14, 2023
    Publication date: October 12, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Feng-Wei Kuo, Wen-Shiang Liao, Robert Bogdan Staszewski, Jianglin Du
  • Publication number: 20230314719
    Abstract: An optical device for coupling light propagating between a waveguide and an optical transmission component is provided. The optical device includes a taper portion and a grating portion. The taper portion is disposed between the grating portion and the waveguide. The grating portion includes rows of grating patterns. A first size of a first grating pattern in a first row of grating patterns is larger than a second size of a second grating pattern in a second row of grating patterns. A first distance between the first row of grating patterns and the waveguide is less than a second distance between the second row of grating patterns and the waveguide.
    Type: Application
    Filed: June 8, 2023
    Publication date: October 5, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chan-Hong Chern, Chih-Chang Lin, Chewn-Pu Jou, Chih-Tsung Shih, Feng-Wei Kuo, Lan-Chou Cho, Min-Hsiang Hsu, Weiwei Song
  • Publication number: 20230307390
    Abstract: A semiconductor package includes a first semiconductor device, a second semiconductor device vertically positioned above the first semiconductor device, and a ground shielded transmission path. The ground shielded transmission path couples the first semiconductor device to the second semiconductor device. The ground shielded transmission path includes a first signal path extending longitudinally between a first end and a second end. The first signal path includes a conductive material. A first insulating layer is disposed over the signal path longitudinally between the first end and the second end. The first insulating layer includes an electrically insulating material. A ground shielding layer is disposed over the insulating material longitudinally between the first end and the second end of the signal path. The ground shielding layer includes a conductive material coupled to ground.
    Type: Application
    Filed: March 21, 2023
    Publication date: September 28, 2023
    Inventors: Feng Wei KUO, Wen-Shiang Liao, Chewn-Pu Jou, Huan-Neng Chen, Lan-Chou Cho, William Wu Shen
  • Patent number: 11768338
    Abstract: An optical interconnect structure including a base substrate, an optical waveguide, a first reflector, a second reflector, a dielectric layer, a first lens, and a second lens is provided. The optical waveguide is embedded in the base substrate. The optical waveguide includes a first end portion and a second end portion opposite to the first end portion. The first reflector is disposed between the base substrate and the first end portion of the optical waveguide. The second reflector is disposed between the base substrate and the second end portion of the optical waveguide. The dielectric layer covers the base substrate and the optical waveguide. The first lens is disposed on the dielectric layer and located above the first end portion of the optical waveguide. The second lens is disposed on the dielectric layer and located above the second end portion of the optical waveguide.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: September 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Ming Weng, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Hua-Kuei Lin, Yu-Hsiang Hu, Chewn-Pu Jou, Feng-Wei Kuo
  • Patent number: 11770106
    Abstract: Systems and methods for suppressing and mitigating harmonic distortion in a circuit are disclosed. In one example, a disclosed circuit includes a radio frequency (RF) oscillator and a power amplifier. The RF oscillator is configured to generate an RF signal. The power amplifier is configured to generate an amplified RF signal based on the RF signal. The power amplifier includes a transformer including a primary winding and a secondary winding, and a feedback capacitor electrically coupled to the primary winding and the secondary winding.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: September 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Feng-Wei Kuo, Kai Xu, Robert Bogdan Staszewski
  • Publication number: 20230296430
    Abstract: A device includes a scattering structure and a collection structure. The scattering structure is arranged to concurrently scatter incident electromagnetic radiation along a first scattering axis and along a second scattering axis. The first scattering axis and the second scattering axis are non-orthogonal. The collection structure includes a first input port aligned with the first scattering axis and a second input port aligned with the second scattering axis. A method includes scattering electromagnetic radiation along a first scattering axis to create first scattered electromagnetic radiation and along a second scattering axis to create second scattered electromagnetic radiation. The first scattering axis and the second scattering axis are non-orthogonal. The first scattered electromagnetic radiation is detected to yield first detected radiation and the second scattered electromagnetic radiation is detected to yield second detected radiation.
    Type: Application
    Filed: May 26, 2023
    Publication date: September 21, 2023
    Inventors: Chewn-Pu JOU, Feng Wei KUO, Huan-Neng CHEN, Lan-Chou CHO
  • Publication number: 20230297759
    Abstract: A method of verifying an integrated circuit stack includes adding a first dummy layer to a first contact pad of a circuit, wherein a location of the first dummy layer is determined based on a location of a second contact pad of a connecting substrate. The method further includes converting the first dummy layer location to the connecting substrate. The method further includes adjusting the first dummy layer location in the circuit in response to a determination that the first dummy layer location is misaligned with the second contact pad. The method further includes performing a first layout versus schematic (LVS) check of the connecting substrate including the first dummy layer in response to a determination that the first dummy layer is aligned with the second contact pad.
    Type: Application
    Filed: May 25, 2023
    Publication date: September 21, 2023
    Inventors: Feng Wei KUO, Shuo-Mao CHEN, Chin-Yuan HUANG, Kai-Yun LIN, Ho-Hsiang CHEN, Chewn-Pu JOU
  • Publication number: 20230298993
    Abstract: Among other things, a method of fabricating an integrated electronic device package is described. First trace portions of an electrically conductive trace are formed on an electrically insulating layer of a package structure, and vias of the conductive trace are formed in a sacrificial layer disposed on the electrically insulating layer. The sacrificial layer is removed, and a die is placed above the electrically insulating layer. Molding material is formed around exposed surfaces of the die and exposed surfaces of the vias, and a magnetic structure is formed within the layer of molding material. Second trace portions of the electrically conductive trace are formed above the molding material and the magnetic structure. The electrically conductive trace and the magnetic structure form an inductor. The electrically conductive trace may have a coil shape surrounding the magnetic structure. The die may be positioned between portions of the inductor.
    Type: Application
    Filed: May 25, 2023
    Publication date: September 21, 2023
    Inventors: Wen-Shiang Liao, Chih-Hang Tung, Chen-Hua Yu, Chewn-Pu Jou, Feng Wei Kuo
  • Patent number: 11762145
    Abstract: Disclosed are apparatuses for optical coupling and a system for communication. In one embodiment, an apparatus for optical coupling having an optical coupling region is disclosed. The apparatus for optical coupling includes a substrate and a core layer disposed on the substrate. The core layer includes a plurality of holes located in the optical coupling region. An effective refractive index of the core layer gradually decrease from a first end of the optical coupling region to a second end of the optical coupling region.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: September 19, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Feng-Wei Kuo, Chewn-Pu Jou