Patents by Inventor Francine Y. Robb

Francine Y. Robb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7767529
    Abstract: A semiconductor component resistant to the formation of a parasitic bipolar transistor and a method for manufacturing the semiconductor component using a reduced number of masking steps. A semiconductor material of N-type conductivity having a region of P-type conductivity is provided. A doped region of N-type conductivity is formed in the region of P-type conductivity. Trenches are formed in a semiconductor material and extend through the regions of N-type and P-type conductivities. A field oxide is formed from the semiconductor material such that portions of the trenches extend under the field oxide. The field oxide serves as an implant mask in the formation of source regions. Body contact regions are formed from the semiconductor material and an electrical conductor is formed in contact with the source and body regions. An electrical conductor is formed in contact with the backside of the semiconductor material.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: August 3, 2010
    Assignee: Semiconductor Componenets Industries, LLC
    Inventors: Prasad Venkatraman, Gordon M. Grivna, Francine Y. Robb, George Chang, Carroll Casteel
  • Publication number: 20100133610
    Abstract: In one embodiment, a vertical power transistor is formed on a semiconductor substrate with other transistors. A portion of the semiconductor layer underlying the vertical power transistor is doped to provide a low on-resistance for the vertical power transistor.
    Type: Application
    Filed: January 29, 2010
    Publication date: June 3, 2010
    Inventors: Francine Y. Robb, Stephen P. Robb, Prasad Venkatraman, Zia Hossain
  • Patent number: 7714381
    Abstract: In one embodiment, a vertical power transistor is formed on a semiconductor substrate with other transistors. A portion of the semiconductor layer underlying the vertical power transistor is doped to provide a low on-resistance for the vertical power transistor.
    Type: Grant
    Filed: April 1, 2005
    Date of Patent: May 11, 2010
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Francine Y. Robb, Stephen P. Robb, Prasad Venkatraman, Zia Hossain
  • Publication number: 20090250720
    Abstract: Transient voltage suppressor and method for manufacturing the transient voltage suppressor having a dopant or carrier concentration in a portion of a gate region near a Zener region that is different from a dopant concentration in a portion of a gate region that is away from the Zener region.
    Type: Application
    Filed: April 4, 2008
    Publication date: October 8, 2009
    Inventors: Emmanuel Saucedo-Flores, Mingjiao Liu, Francine Y. Robb, Ali Salih
  • Patent number: 7579632
    Abstract: In one embodiment, an ESD device is configured to include a zener diode and a P-N diode.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: August 25, 2009
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventors: Ali Salih, Mingjiao Liu, Sudhama C. Shastri, Thomas Keena, Gordon M. Grivna, John Michael Parsey, Jr., Francine Y. Robb, Ki Chang
  • Publication number: 20090179223
    Abstract: In one embodiment, a transistor is formed to have a first current flow path to selectively conduct current in both directions through the transistor and to have a second current flow path to selectively conduct current in one direction.
    Type: Application
    Filed: March 20, 2009
    Publication date: July 16, 2009
    Inventors: Francine Y. Robb, Stephen P. Robb
  • Publication number: 20090162988
    Abstract: In one embodiment, the ESD device uses highly doped P and N regions deep within the ESD device to form a zener diode that has a controlled breakdown voltage.
    Type: Application
    Filed: February 27, 2009
    Publication date: June 25, 2009
    Inventors: Thomas Keena, Ki Chang, Francine Y. Robb, Mingjiao Liu, Ali Salih, John Michael Parsey, JR., George Chang
  • Patent number: 7538395
    Abstract: In one embodiment, the ESD device uses highly doped P and N regions deep within the ESD device to form a zener diode that has a controlled breakdown voltage.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: May 26, 2009
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventors: Thomas Keena, Ki Chang, Francine Y. Robb, Mingjiao Liu, Ali Salih, John Michael Parsey, Jr., George Chang
  • Patent number: 7537970
    Abstract: In one embodiment, a transistor is formed to have a first current flow path to selectively conduct current in both directions through the transistor and to have a second current flow path to selectively conduct current in one direction.
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: May 26, 2009
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventors: Francine Y. Robb, Stephen P. Robb
  • Publication number: 20090079022
    Abstract: In one embodiment, the ESD device uses highly doped P and N regions deep within the ESD device to form a zener diode that has a controlled breakdown voltage.
    Type: Application
    Filed: September 21, 2007
    Publication date: March 26, 2009
    Inventors: Thomas Keena, Ki Chang, Francine Y. Robb, Mingjiao Liu, Ali Salih, John Michael Parsey, JR., George Chang
  • Publication number: 20090079001
    Abstract: In one embodiment, an ESD device is configured to include a zener diode and a P-N diode.
    Type: Application
    Filed: September 21, 2007
    Publication date: March 26, 2009
    Inventors: Ali Salih, Mingjiao Liu, Sudhama C. Shastri, Thomas Keena, Gordon M. Grivna, John Michael Parsey, JR., Francine Y. Robb, Ki Chang
  • Publication number: 20090045440
    Abstract: In one embodiment, an MOS transistor is formed with trench gates. The gate structure of the trench gates generally has a first insulator that has a first thickness in one region of the gate and a second thickness in a second region of the gate.
    Type: Application
    Filed: August 17, 2007
    Publication date: February 19, 2009
    Inventors: Gordon M. Grivna, Francine Y. Robb
  • Publication number: 20080277694
    Abstract: A semiconductor component that includes a Schottky device, an edge termination structure, a non-Schottky semiconductor device, combinations thereof and a method of manufacturing the semiconductor component. A semiconductor material includes a first epitaxial layer disposed on a semiconductor substrate and a second epitaxial layer disposed on the first epitaxial layer. The second epitaxial layer has a higher resistivity than the semiconductor substrate. A Schottky device and a non-Schottky semiconductor device are manufactured from the second epitaxial layer. In accordance with another embodiment, a semiconductor material includes an epitaxial layer disposed over a semiconductor substrate. The epitaxial layer has a higher resistivity than the semiconductor substrate. A doped region is formed in the epitaxial layer. A Schottky device and a non-Schottky semiconductor device are manufactured from the epitaxial layer.
    Type: Application
    Filed: May 9, 2007
    Publication date: November 13, 2008
    Inventors: Zia Hossain, Francine Y. Robb, Prasad Venkatraman
  • Publication number: 20080258210
    Abstract: A semiconductor component resistant to the formation of a parasitic bipolar transistor and a method for manufacturing the semiconductor component using a reduced number of masking steps. A semiconductor material of N-type conductivity having a region of P-type conductivity is provided. A doped region of N-type conductivity is formed in the region of P-type conductivity. Trenches are formed in a semiconductor material and extend through the regions of N-type and P-type conductivities. A field oxide is formed from the semiconductor material such that portions of the trenches extend under the field oxide. The field oxide serves as an implant mask in the formation of source regions. Body contact regions are formed from the semiconductor material and an electrical conductor is formed in contact with the source and body regions. An electrical conductor is formed in contact with the backside of the semiconductor material.
    Type: Application
    Filed: April 20, 2007
    Publication date: October 23, 2008
    Inventors: Prasad Venkatraman, Gordon M. Grivna, Francine Y. Robb, George Chang, Carroll Casteel
  • Patent number: 7297603
    Abstract: In one embodiment, a transistor is formed to conduct current in both directions through the transistor.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: November 20, 2007
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventors: Stephen P. Robb, Francine Y. Robb, Robert F. Hightower
  • Patent number: 7282406
    Abstract: In one embodiment, an MOS transistor is formed with trench gates. The gate structure of the trench gates generally has a first insulator that has a first thickness in one region of the gate and a second thickness in a second region of the gate.
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: October 16, 2007
    Assignee: Semiconductor Companents Industries, L.L.C.
    Inventors: Gordon M. Grivna, Francine Y. Robb
  • Patent number: 7102199
    Abstract: A method of providing a Transient Voltage Suppression (TVS) device is described utilizing a Metal Oxide Semiconductor (MOS) structure and an Insulated Gate Bipolar Transistor (IGBT) structure. The MOS based TVS devices offer reduced leakage current with reduced clamp voltages between 0.5 and 5 volts. Trench MOS based TVS device (72) provides an enhanced gain operation, while device (88) provides a top side drain contact. The high gain MOS based TVS devices provide increased control over clamp voltage variation.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: September 5, 2006
    Assignee: Semiconductor Components Industries L.L.C.
    Inventors: Francine Y. Robb, Jeffrey Pearse, David M. Heminger, Stephen P. Robb
  • Patent number: 7030447
    Abstract: A method of providing a Transient Voltage Suppression (TVS) device is described utilizing a Metal Oxide Semiconductor (MOS) structure and an Insulated Gate Bipolar Transistor (IGBT) structure. The MOS based TVS devices offer reduced leakage current with reduced clamp voltages between 0.5 and 5 volts. Trench MOS based TVS device (72) provides an enhanced gain operation, while device (88) provides a top side drain contact. The high gain MOS based TVS devices provide increased control over clamp voltage variation.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: April 18, 2006
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventors: Francine Y. Robb, Jeffrey Pearse, David M. Heminger, Stephen P. Robb
  • Patent number: 6953980
    Abstract: A filter circuit (10) is formed on a semiconductor substrate (11) formed with a trench (40) that is lined with a dielectric layer (38). A conductive material (37) is disposed in the trench and coupled to a node (62) to provide a capacitance that modifies a frequency response of an input signal (VIN) to produce a filtered signal (VOUT). An electrostatic discharge device includes an inductor (74) coupled to back to back diodes (17, 18) formed in the substrate to avalanche when a voltage on the node reaches a predetermined magnitude.
    Type: Grant
    Filed: June 11, 2002
    Date of Patent: October 11, 2005
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Rene Escoffier, Evgueniy Stefanov, Jeffrey Pearse, Francine Y. Robb, Peter J. Zdebel
  • Publication number: 20040070029
    Abstract: A method of providing a Transient Voltage Suppression (TVS) device is described utilizing a Metal Oxide Semiconductor (MOS) structure and an Insulated Gate Bipolar Transistor (IGBT) structure. The MOS based TVS devices offer reduced leakage current with reduced clamp voltages between 0.5 and 5 volts. Trench MOS based TVS device (72) provides an enhanced gain operation, while device (88) provides a top side drain contact. The high gain MOS based TVS devices provide increased control over clamp voltage variation.
    Type: Application
    Filed: July 15, 2003
    Publication date: April 15, 2004
    Inventors: Francine Y. Robb, Jeffrey Pearse, David M. Heminger, Stephen P. Robb