Patents by Inventor Francisco A. Leon

Francisco A. Leon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120077207
    Abstract: The present invention discloses a method for assaying the binding of L104EA29YIg to a receptor. The receptor is preferably CD86 or CD80. The present invention also discloses antibodies to be used in the assay, as well as hybridomas expressing the antibodies.
    Type: Application
    Filed: January 7, 2009
    Publication date: March 29, 2012
    Inventors: Catherine A. Fleener, Robert M. Townsend, Francisco Leon
  • Publication number: 20110284380
    Abstract: The present invention provides methods and systems for nanowire alignment and deposition. Energizing (e.g., an alternating current electric field) is used to align and associate nanowires with electrodes. By modulating the energizing, the nanowires are coupled to the electrodes such that they remain in place during subsequent wash and drying steps. The invention also provides methods for transferring nanowires from one substrate to another in order to prepare various device substrates. The present invention also provides methods for monitoring and controlling the number of nanowires deposited at a particular electrode pair, as well as methods for manipulating nanowires in solution.
    Type: Application
    Filed: May 23, 2011
    Publication date: November 24, 2011
    Inventors: Samuel MARTIN, Xiangfeng Duan, Katsumasa Fujii, James M. Hamilton, Hiroshi Iwata, Francisco Leon, Jeffrey Miller, Tetsu Negishi, Hiroshi Ohki, J. Wallace Parce, Cheri X.Y. Pereira, Paul John Schuele, Akihide Shibata, David P. Stumbo, Yasunobu Okada
  • Patent number: 8030161
    Abstract: A nonvolatile memory cell includes a substrate comprising a source, drain, and channel between the source and the drain. A tunnel dielectric layer overlies the channel, and a localized charge storage layer is disposed between the tunnel dielectric layer and a control dielectric layer. A gate electrode has a first surface adjacent to the control dielectric layer, and the first surface includes a midsection and two edge portions. According to one embodiment, the midsection defines a plane, and at least one edge portion extends away from the plane. Preferably, the edge portion extending away from the plane converges toward an opposing second surface of the gate electrode. According to another embodiment, the gate electrode of the nonvolatile memory cell includes a first sublayer and a second sublayer of a different width on the first sublayer.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: October 4, 2011
    Assignee: Nanosys, Inc.
    Inventors: Xiangfeng Duan, Jian Chen, J. Wallace Parce, Francisco A. Leon
  • Patent number: 7968474
    Abstract: The present invention provides methods and systems for nanowire alignment and deposition. Energizing (e.g., an alternating current electric field) is used to align and associate nanowires with electrodes. By modulating the energizing, the nanowires are coupled to the electrodes such that they remain in place during subsequent wash and drying steps. The invention also provides methods for transferring nanowires from one substrate to another in order to prepare various device substrates. The present invention also provides methods for monitoring and controlling the number of nanowires deposited at a particular electrode pair, as well as methods for manipulating nanowires in solution.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: June 28, 2011
    Assignees: Nanosys, Inc., Sharp Kabushiki Kaisha
    Inventors: Samuel Martin, Xiangfeng Duan, Katsumasa Fujii, James M. Hamilton, Hiroshi Iwata, Francisco Leon, Jeffrey Miller, Tetsu Negishi, Hiroshi Ohki, J. Wallace Parce, Cheri X. Y. Pereira, Paul John Schuele, Akihide Shibata, David P. Stumbo, Yasunobu Okada
  • Patent number: 7871870
    Abstract: Methods, systems, and apparatuses for electronic devices having improved gate structures are described. An electronic device includes at least one nanowire. A gate contact is positioned along at least a portion of a length of the at least one nanowire. A dielectric material layer is between the gate contact and the at least one nanowire. A source contact and a drain contact are in contact with the at least one nanowire. At least a portion of the source contact and/or the drain contact overlaps with the gate contact along the nanowire the length. In another aspect, an electronic device includes a nanowire having a semiconductor core surrounded by an insulating shell layer. A ring shaped first gate region surrounds the nanowire along a portion of the length of the nanowire. A second gate region is positioned along the length of the nanowire between the nanowire and the substrate.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: January 18, 2011
    Assignee: Nanosys, Inc.
    Inventors: Shahriar Mostarshed, Jian Chen, Francisco A. Leon, Yaoling Pan, Linda T. Romano
  • Patent number: 7760980
    Abstract: A method of fabricating on a substrate an optical detector in an optical waveguide, the method involving: forming at least one layer on a surface of the substrate, said at least one layer comprising SiGe; implanting an impurity into the at least one layer over a first area to form a detector region for the optical detector; etching into the at least one layer in a first region and a second region to form a ridge between the first and second regions, said ridge defining the optical detector and the optical waveguide; filling the first and second regions with a dielectric material having a lower refractive index than SiGe; and after filling the first and second regions with the dielectric material, removing surface material to form a planarized upper surface.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: July 20, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Lawrence C. West, Gregory L. Wojcik, Francisco A. Leon, Yonah Cho, Andreas Goebel
  • Publication number: 20100167512
    Abstract: Methods of doping nanostructures, such as nanowires, are disclosed. The methods provide a variety of approaches for improving existing methods of doping nanostructures. The embodiments include the use of a sacrificial layer to promote uniform dopant distribution within a nanostructure during post-nanostructure synthesis doping. In another embodiment, a high temperature environment is used to anneal nanostructure damage when high energy ion implantation is used. In another embodiment rapid thermal annealing is used to drive dopants from a dopant layer on a nanostructure into the nanostructure. In another embodiment a method for doping nanowires on a plastic substrate is provided that includes depositing a dielectric stack on a plastic substrate to protect the plastic substrate from damage during the doping process.
    Type: Application
    Filed: March 9, 2010
    Publication date: July 1, 2010
    Applicant: NANOSYS, INC.
    Inventors: Yaoling Pan, Jian Chen, Francisco Leon, Shahriar Mostarshed, Linda T. Romano, Vijendra Sahi, David P. Stumbo
  • Publication number: 20100144103
    Abstract: Methods, systems, and apparatuses for electronic devices having improved gate structures are described. An electronic device includes at least one nanowire. A gate contact is positioned along at least a portion of a length of the at least one nanowire. A dielectric material layer is between the gate contact and the at least one nanowire. A source contact and a drain contact are in contact with the at least one nanowire. At least a portion of the source contact and/or the drain contact overlaps with the gate contact along the nanowire the length. In another aspect, an electronic device includes a nanowire having a semiconductor core surrounded by an insulating shell layer. A ring shaped first gate region surrounds the nanowire along a portion of the length of the nanowire. A second gate region is positioned along the length of the nanowire between the nanowire and the substrate.
    Type: Application
    Filed: February 9, 2010
    Publication date: June 10, 2010
    Applicant: NANOSYS, INC.
    Inventors: Shahriar Mostarshed, Jian Chen, Francisco Leon, Yaoling Pan, Linda T. Romano
  • Patent number: 7701014
    Abstract: Methods, systems, and apparatuses for electronic devices having improved gate structures are described. An electronic device includes at least one nanowire. A gate contact is positioned along at least a portion of a length of the at least one nanowire. A dielectric material layer is between the gate contact and the at least one nanowire. A source contact and a drain contact are in contact with the at least one nanowire. At least a portion of the source contact and/or the drain contact overlaps with the gate contact along the nanowire the length. In another aspect, an electronic device includes a nanowire having a semiconductor core surrounded by an insulating shell layer. A ring shaped first gate region surrounds the nanowire along a portion of the length of the nanowire. A second gate region is positioned along the length of the nanowire between the nanowire and the substrate.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: April 20, 2010
    Assignee: Nanosys, Inc.
    Inventors: Shahriar Mostarshed, Jian Chen, Francisco Leon, Yaoling Pan, Linda T. Romano
  • Publication number: 20090269878
    Abstract: A method of fabricating a detector that involves: forming a trench in a substrate, the substrate having an upper surface; forming a first doped semiconductor layer on the substrate and in the trench; forming a second semiconductor layer on the first doped semiconductor layer and extending into the trench, the second semiconductor layer having a conductivity that is less than the conductivity of the first doped semiconductor layer; forming a third doped semiconductor layer on the second semiconductor layer and extending into the trench; removing portions of the first, second and third layers that are above a plane defined by the surface of the substrate to produce an upper, substantially planar surface and expose an upper end of the first doped semiconductor layer in the trench; forming a first electrical contact to the first semiconductor doped layer; and forming a second electrical contact to the third semiconductor doped layer.
    Type: Application
    Filed: April 8, 2009
    Publication date: October 29, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Francisco A. Leon, Lawrence C. West, Yuichi Wada, Gregory L. Wojcik, Stephen Moffatt
  • Publication number: 20090230380
    Abstract: The present invention relates to methods of forming substrate elements, including semiconductor elements such as nanowires, transistors and other structures, as well as the elements formed by such methods.
    Type: Application
    Filed: December 9, 2008
    Publication date: September 17, 2009
    Applicant: NANOSYS, Inc.
    Inventors: Francisco LEON, Francesco LEMMI, Jeffrey MILLER, David DUTTON, David P. STUMBO
  • Patent number: 7553371
    Abstract: Porous and/or curved nanofiber bearing substrate materials are provided having enhanced surface area for a variety of applications including as electrical substrates, semipermeable membranes and barriers, structural lattices for tissue culturing and for composite materials, production of long unbranched nanofibers, and the like.
    Type: Grant
    Filed: January 11, 2006
    Date of Patent: June 30, 2009
    Assignee: Nanosys, Inc.
    Inventors: Robert Dubrow, Carlos Guillermo Casillas, William P. Freeman, Jay L. Goldman, Veeral Dilip Hardev, Francisco Leon, Chunming Niu, Cheri X. Y. Pereira
  • Publication number: 20090143227
    Abstract: Porous and/or curved nanofiber bearing substrate materials are provided having enhanced surface area for a variety of applications including as electrical substrates, semipermeable membranes and barriers, structural lattices for tissue culturing and for composite materials, production of long unbranched nanofibers, and the like.
    Type: Application
    Filed: January 11, 2006
    Publication date: June 4, 2009
    Applicant: NANOSYS, Inc.
    Inventors: Robert Dubrow, Carlos Guillermo Casillas, William P. Freeman, Jay L. Goldman, Veeral Dilip Hardev, Francisco Leon, Chunming Niu, Cheri X. Y. Pereira
  • Patent number: 7528111
    Abstract: The present invention relates to methods of vaccinating subjects receiving immune modulating therapy, such as soluble CTLA4 molecules, for treatment of immune system diseases mediated by T-cell interactions with B7-positive cells including, but not limited to, autoimmune diseases, immunoproliferative diseases, and immune disorders associated with graft transplantation.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: May 5, 2009
    Assignee: Bristol-Myers Squibb Company
    Inventors: George Vratsanos, Francisco Leon, Lee K. Tay, Kenneth M. Bahrt
  • Patent number: 7510844
    Abstract: The present invention discloses a method for assaying the binding of L104EA29YIg to a receptor. The receptor is preferably CD86 or CD80. The present invention also discloses antibodies to be used in the assay, as well as hybridomas expressing the antibodies.
    Type: Grant
    Filed: January 22, 2007
    Date of Patent: March 31, 2009
    Assignee: Bristol-Myers Squibb Company
    Inventors: Robert M. Townsend, Catherine A. Fleener, Francisco Leon
  • Publication number: 20090081061
    Abstract: The present invention is directed to a peripherally pivoted oscillating vane machine (OVM). The OVM has been optimized for performance and efficiency. This has been accomplished by reducing loads on the drive mechanism and by employing de-phased motion of the peripherally pivoted vanes in conjunction with improved porting configurations as well as valve actuation and manufacture.
    Type: Application
    Filed: September 22, 2008
    Publication date: March 26, 2009
    Inventors: STEPHEN M. CHOMYSZAK, JEDD MARTIN, JAMES T. FERENTINOS, HAI-PING MA, FRANCISCO LEON
  • Publication number: 20090050974
    Abstract: Methods, systems, and apparatuses for electronic devices having improved gate structures are described. An electronic device includes at least one nanowire. A gate contact is positioned along at least a portion of a length of the at least one nanowire. A dielectric material layer is between the gate contact and the at least one nanowire. A source contact and a drain contact are in contact with the at least one nanowire. At least a portion of the source contact and/or the drain contact overlaps with the gate contact along the nanowire the length. In another aspect, an electronic device includes a nanowire having a semiconductor core surrounded by an insulating shell layer. A ring shaped first gate region surrounds the nanowire along a portion of the length of the nanowire. A second gate region is positioned along the length of the nanowire between the nanowire and the substrate.
    Type: Application
    Filed: October 2, 2008
    Publication date: February 26, 2009
    Applicant: NANOSYS, INC.
    Inventors: Shahriar Mostarshed, Jian Chen, Francisco Leon, Yaoling Pan, Linda T. Romano
  • Patent number: 7473943
    Abstract: Methods, systems, and apparatuses for electronic devices having improved gate structures are described. An electronic device includes at least one nanowire. A gate contact is positioned along at least a portion of a length of the at least one nanowire. A dielectric material layer is between the gate contact and the at least one nanowire. A source contact and a drain contact are in contact with the at least one nanowire. At least a portion of the source contact and/or the drain contact overlaps with the gate contact along the nanowire the length. In another aspect, an electronic device includes a nanowire having a semiconductor core surrounded by an insulating shell layer. A ring shaped first gate region surrounds the nanowire along a portion of the length of the nanowire. A second gate region is positioned along the length of the nanowire between the nanowire and the substrate.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: January 6, 2009
    Assignee: Nanosys, Inc.
    Inventors: Shahriar Mostarshed, Jian Chen, Francisco Leon, Yaoling Pan, Linda T. Romano
  • Publication number: 20080290394
    Abstract: A nonvolatile memory cell includes a substrate comprising a source, drain, and channel between the source and the drain. A tunnel dielectric layer overlies the channel, and a localized charge storage layer is disposed between the tunnel dielectric layer and a control dielectric layer. A gate electrode has a first surface adjacent to the control dielectric layer, and the first surface includes a midsection and two edge portions. According to one embodiment, the midsection defines a plane, and at least one edge portion extends away from the plane. Preferably, the edge portion extending away from the plane converges toward an opposing second surface of the gate electrode. According to another embodiment, the gate electrode of the nonvolatile memory cell includes a first sublayer and a second sublayer of a different width on the first sublayer.
    Type: Application
    Filed: May 15, 2008
    Publication date: November 27, 2008
    Inventors: Xiangfeng DUAN, Jian Chen, J. Wallace Parce, Francisco A. Leon
  • Publication number: 20080224123
    Abstract: The present invention provides methods and systems for nanowire alignment and deposition. Energizing (e.g., an alternating current electric field) is used to align and associate nanowires with electrodes. By modulating the energizing, the nanowires are coupled to the electrodes such that they remain in place during subsequent wash and drying steps. The invention also provides methods for transferring nanowires from one substrate to another in order to prepare various device substrates. The present invention also provides methods for monitoring and controlling the number of nanowires deposited at a particular electrode pair, as well as methods for manipulating nanowires in solution.
    Type: Application
    Filed: November 9, 2007
    Publication date: September 18, 2008
    Inventors: Samuel Martin, Xiangfeng Duan, Katsumasa Fujii, James M. Hamilton, Hiroshi Iwata, Francisco Leon, Jeffrey Miller, Tetsu Negishi, Hiroshi Ohki, J. Wallace Parce, Cheri X.Y. Pereira, Paul John Schuele, Akihide Shibata, David P. Stumbo, Yasunobu Okada