Patents by Inventor Frank H. Peters

Frank H. Peters has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5918108
    Abstract: A vertical cavity surface emitting laser is constructed on a semiconductor substrate, and includes a second mirror stack disposed on the substrate, a gain region with an active material within the second mirror stack capable of emitting electromagnetic radiation at a fundamental wavelength, a non-linear element disposed above the second mirror stack capable of emitting electromagnetic radiation at a harmonic of the fundamental wavelength in response to the electromagnetic radiation at the fundamental wavelength, and a first mirror stack disposed above the non-linear element. Electrodes are applied to the second mirror stack and the substrate for electrically pumping current into the gain region without passing through the non-linear element. A conducting layer can be disposed in the second mirror stack and an annular current confinement region can be formed in the second mirror stack around the gain region to help guide current into the active material.
    Type: Grant
    Filed: September 4, 1997
    Date of Patent: June 29, 1999
    Assignee: W. L. Gore & Associates, Inc
    Inventor: Frank H. Peters
  • Patent number: 5835517
    Abstract: A compact WDM optical device can demultiplex an optical laser signal containing several different wavelengths corresponding to particular channels, and, in reverse operation operate as a multiplexer to interleave several different wavelengths into a multiplexed multi-channel optical laser signal with improved insertion loss characteristics. The optical device includes a linear array of passive resonant optical cavities, in the form of Fabry-Perot filters, extending in a lateral direction and an integral array of associated microlenses extending in the lateral direction. Each microlens has a center which is offset from the central longitudinal axis of an associated Fabry-Perot filter to reflect laser radiation through the device. Each optical cavity is tuned by adjusting the longitudinal dimension thereof to a particular wavelength contained in the multi-channel optical signal. A stepped-wavelength steered laser radiation source for the optical device uses a VCSEL array with offset microlenses.
    Type: Grant
    Filed: October 4, 1996
    Date of Patent: November 10, 1998
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Vijaysekhar Jayaraman, Frank H. Peters
  • Patent number: 5812571
    Abstract: A laser cluster for high-power applications includes an array of VCSELs. The array of VCSELs includes a center VCSEL and one or more peripheral VCSELs displaced from the center VCSEL in a hexagonal closest-packing arrangement sharing a pair of common electrical contacts. Each VCSEL in the array is flip-chip mounted on a heat sink to present the backside of the VCSEL. A multimode optical fiber is coupled to receive laser light from the array of VCSELs. The array of VCSELs is operable to generate a laser burst at a wavelength in a range from 950 nm to 1050 nm. In a process for fabricating a VCSEL that can be clustered for high-power applications, a bottom n-doped mirror stack is deposited above an n-doped gallium arsenide substrate. An active region including indium gallium arsenide is deposited above the bottom mirror stack. A top p-doped mirror stack is deposited above the active region. Electrical contacts are applied to the top mirror stack and to the substrate. The laser cluster is packaged and sealed.
    Type: Grant
    Filed: October 25, 1996
    Date of Patent: September 22, 1998
    Assignee: W. L. Gore & Associates, Inc.
    Inventor: Frank H. Peters
  • Patent number: 5724375
    Abstract: A vertical cavity surface emitting laser is constructed on a semiconductor substrate, and includes a second mirror stack disposed on the substrate, a gain region with an active material within the second mirror stack capable of emitting electromagnetic radiation at a fundamental wavelength, a non-linear element disposed above the second mirror stack capable of emitting electromagnetic radiation at a harmonic of the fundamental wavelength in response to the electromagnetic radiation at the fundamental wavelength, and a first mirror stack disposed above the non-linear element. Electrodes are applied to the second mirror stack and the substrate for electrically pumping current into the gain region without passing through the non-linear element. A conducting layer can be disposed in the second mirror stack and an annular current confinement region can be formed in the second mirror stack around the gain region to help guide current into the active material.
    Type: Grant
    Filed: July 17, 1996
    Date of Patent: March 3, 1998
    Assignee: W. L. Gore & Associates, Inc.
    Inventor: Frank H. Peters